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Time series analysis

Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti
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Used for predicting rainfall in parts of Australia



Time series analysis

A time series is a process in which a given observation

depends on other datapoints in the same series.

52 53 54

Linear regression models:
* Response variable (y)
* Independent variables (x)

48 49 50 51
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Tlme Series: 1910 1920 1930 1940 1950 1960 1970

* Single process (y)

Time

ldea:
* Exploit correlations within the data in order to understand and model the data
* Potentially forecast likelihood of future events



Time series analysis

When analysing time series, we are interested in how two values in the series — separated by k
time-steps — affect each other.

kth autocovariance:

Ye = EQe — )Y — 1) K: Lag

Average covariance between pairs of values that are k time steps apart in the series.

Since these are dependent on the scale of the process, these need to be standardised:

_ Y
Yo

kthautocorrelation: Pk

The autocorrelation function is useful for characterising time series.



Time series analysis

Autocorrelation function:

ACF

Nile annual flow:
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Time series analysis

Autocorrelation function:

Nile annual flow:

Lynx trappings:
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Time series analysis

Autoregressive (AR) time series models:

AR(1): Ye =Ct+ @P1Yi—1 T &



Time series analysis

Autoregressive (AR) time series models:

AR(1): Ye =Ct+ @P1Yi—1 T &

AR(2): Ye =CH+ Q1Yi—1 T QP2Yt—2 T &



Time series analysis

Autoregressive (AR) time series models:

AR(1): Ye =Ct+ @P1Yi—1 T &

AR(2): Ye =CH+ Q1Yi—1 T QP2Yt—2 T &

AR(p): Ye =Ct+@P1Ye—1 Tt T QpYi_p T &

Similarities to multiple regression model, except for the dependencies
Parameters estimated using least squares or maximum likelihood

Assumptions:
* Independent Gaussian errors
* Covariance stationary process (trend doesn’t change over time)



Time series analysis

Autoregressive (AR) time series models: AR(2) with ¢=0, ¢,=0.4 and ¢,=0.2

Autocorrelation
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How to interpret ACF?

Positive parameters: ACF should decay, not oscillate.
Should decay gradually until within the confidence interval, then stay there.
Can’t infer order...
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Time series analysis

Autoregressive (AR) time series models:

Autocorrelation
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Partial autocorrelation function:

Parsimonious modelling:
First try AR(1), then AR(2), etc. until Hy: a(p) = 0 is not rejected.
Failure to reject leads us to conclude that AR(p) is more appropriate than AR(p-1).
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AR(2) with c=0, ¢4=0.4 and ¢,=0.2
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a(p) = ¢, from a AR(p) model

11



Time series analysis

Moving Average (MA) time series models:

MA(].) Ve = C + Et + ngt—l



Time series analysis

Moving Average (MA) time series models:

MA(].) Ve = C + &t + ngt—l
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Time series analysis

Moving Average (MA) time series models:

MA(].) yt =C+ ‘St + ngt—l
MA(2): Ve=Cté& +016 4+ 06,
MA(q): Ve=C+e+ 016 4+ -+ 0,84

Unlike multiple regression model there are multiple error terms
However, the current state is only ever dependent on a known no. of previous states

Since the current state only depends on the previous g states,
the ACF should suddenly drop to zero, unlike AR(p) processes



Time series analysis

More general models:

Auto Regressive, Moving Average:
ARMA(p,q):

Ye=C+ Q1Ye—q Tt ‘Pth—p"" & +
!

ngt—l + °° + Hqgt—q
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MA(q)
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Time series analysis

More general models:

Auto Regressive, Moving Average:

ARMA(p,q): Yy =CcH+ Q1Y+t QpYVip + &+ 0161 + -+ 0,6
L J L

J

1 1
AR(p) MA(q)

Auto Regressive, Integrated, Moving Average:

ARIMA(p,1,9): X, = Y, — Vi1 then model as ARMA(p,q)
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Time series analysis

More general models:

Auto Regressive, Moving Average:

ARMA(p,q): Yy =CcH+ Q1Y+t QpYVip + &+ 0161 + -+ 0,6
L ]

Y L Y ]

AR(p) MA(q)

Auto Regressive, Integrated, Moving Average:

ARIMA(p,1,9): X, = Y, — Vi1 then model as ARMA(p,q)

ARIMA(p,d,q): x; = det take dth order differences

Considering ARIMA models can be a useful “transformation” if assumptions are violated
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Time series analysis

Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti
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Used for predicting rainfall in parts of Australia



Time series analysis

Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti
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Time series analysis

Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti
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Time series analysis

Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti
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Time series analysis

Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti
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Time series analysis

Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti

Try ARIMA(0,1,1) model:

arima(x = x$Index, order = c(@, 1, 1))

Coefficients:
mal

-0.5579

s.e. 0.0308

sigmar2 estimated as 52.94: 1log likelihood = -2477.98, aic = 4959.96



Time series analysis

R functions:

acf(x,lag.max=70) 5 Hl
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Time series analysis

R functions:

acf(x,lag.max=70) ST
o L. L1 R P B
difFC0) AL R

pacf(diff(x),lag.max=70) &




Time series analysis

R functions: "

## Call:

acf(x,lag.max: 70) ## arima(x = xSIndex, order = ¢(0, 1, 1))
Hu
## Coefficients:

diff(x) s mal
## -0.5579

pacf(diff(x),lag.max=70) **se- 00308
## sigma”2 estimated as 52.94: log likelihood

arima(x,order=c(0,1,1)) =-2477.98, aic=14959.96



