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Time series analysis
Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti
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Used for predicting rainfall in parts of Australia



Time series analysis

A time series is a process in which a given observation 
depends on other datapoints in the same series.

Linear regression models:
• Response variable (y)
• Independent variables (x)

Time series:
• Single process (y)

Idea: 
• Exploit correlations within the data in order to understand and model the data
• Potentially forecast likelihood of future events
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Time series analysis
When analysing time series, we are interested in how two values in the series – separated by k 
time-steps – affect each other.

kthautocovariance:

Average covariance between pairs of values that are k time steps apart in the series.

Since these are dependent on the scale of the process, these need to be standardised:

kthautocorrelation:

The autocorrelation function is useful for characterising time series.
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K: Lag



Time series analysis
Autocorrelation function:
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Time series analysis
Autocorrelation function:
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Time series analysis
Autoregressive (AR) time series models:
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AR(1):



Time series analysis
Autoregressive (AR) time series models:
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AR(1):

AR(2):



Time series analysis
Autoregressive (AR) time series models:
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Similarities to multiple regression model, except for the dependencies
Parameters estimated using least squares or maximum likelihood

Assumptions:
• Independent Gaussian errors
• Covariance stationary process (trend doesn’t change over time)

AR(1):

AR(2):

AR(p):



Time series analysis
Autoregressive (AR) time series models:
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How to interpret ACF?
• Positive parameters: ACF should decay, not oscillate.
• Should decay gradually until within the confidence interval, then stay there.
• Can’t infer order…

AR(2) with c=0, ϕ1=0.4 and ϕ2=0.2



Time series analysis
Autoregressive (AR) time series models:
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Partial autocorrelation function: α(p) = ϕp from a AR(p) model

Parsimonious modelling:
• First try AR(1), then AR(2), etc. until H0 : α(p) = 0 is not rejected.
• Failure to reject leads us to conclude that AR(p) is more appropriate than AR(p-1).

AR(2) with c=0, ϕ1=0.4 and ϕ2=0.2



Time series analysis
Moving Average (MA) time series models:
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MA(1):



Time series analysis
Moving Average (MA) time series models:
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MA(1):

MA(2):



Time series analysis
Moving Average (MA) time series models:
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Unlike multiple regression model there are multiple error terms
However, the current state is only ever dependent on a known no. of previous states

Since the current state only depends on the previous q states, 
the ACF should suddenly drop to zero, unlike AR(p) processes

MA(1):

MA(2):

MA(q):



Time series analysis
More general models:
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ARMA(p,q):

AR(p) MA(q)

Auto Regressive, Moving Average:



Time series analysis
More general models:
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ARMA(p,q):

ARIMA(p,1,q):

AR(p) MA(q)

then model as ARMA(p,q)

Auto Regressive, Moving Average:

Auto Regressive, Integrated, Moving Average:



Time series analysis
More general models:
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ARMA(p,q):

ARIMA(p,1,q):

ARIMA(p,d,q):

AR(p) MA(q)

then model as ARMA(p,q)

take dth order differences

Considering ARIMA models can be a useful “transformation” if assumptions are violated 

Auto Regressive, Integrated, Moving Average:

Auto Regressive, Moving Average:



Time series analysis
Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti

0 200 400 600

-3
0

-1
0

0
10

20
30

Index

O
sc

ill
at

io
n 

In
de

x

Used for predicting rainfall in parts of Australia
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Time series analysis
Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti
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Time series analysis
Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti
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Time series analysis
Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti
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Time series analysis
Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti



Time series analysis
Example: Monthly Southern Oscillation Index
Monthly difference in sea-surface air pressure between Darwin and Tahiti

Try ARIMA(0,1,1) model:

arima(x = x$Index, order = c(0, 1, 1))

Coefficients:
ma1

-0.5579
s.e. 0.0308

sigma^2 estimated as 52.94:  log likelihood = -2477.98,  aic = 4959.96



24

R functions:

acf(x,lag.max=70)

Time series analysis
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R functions:

acf(x,lag.max=70)

diff(x)

pacf(diff(x),lag.max=70)

Time series analysis
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R functions:

acf(x,lag.max=70)

diff(x)

pacf(diff(x),lag.max=70)

arima(x,order=c(0,1,1))

Time series analysis

## 
## Call:
## arima(x = x$Index, order = c(0, 1, 1))
## 
## Coefficients:
##           ma1
##       -0.5579
## s.e.   0.0308
## 
## sigma^2 estimated as 52.94:  log likelihood 
= -2477.98,  aic = 4959.96


