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Linear model not suitable:
I Assumed model:

Yi = xTi β + εi where εi ∼ N(0, σ2),

Yi|(xi,β) ∼ N(µi, σ
2).

. theoretical range of εi = [−∞,+∞],

. xTi β not bounded to [0,∞] or [0, 1],

. Var[Yi] independent of E[Yi].

I Solution:
Yi|(xi,β, φ) ∼ distribution(function(xTi β), φ),

where distribution belongs to the exponential family and function is
monotonically increasing.
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GLM: conditional distributions

Yi|(xi,β, φ) ∼ distribution(function(xTi β), φ),

I Some possible conditional distributions :
statistical probability mass functions & density functions

I Within the exponential family [‘classical’ GLM framework]

normal
exponential
gamma

chi-squared
beta
Dirichlet

Bernoulli
Poisson
Wishart

Inverse Wishart

...

I Outside the exponential family [‘extended’ GLM framework]

Box-Cox power
exponential
exponential Gaussian
generalized beta
generalized gamma
generalized inverse

Gaussian
inverse Gaussian
logistic
power exponential
reverse Gumbel
skew power exponential

Weibull
Pareto type I, II, III
Poisson inverse Gaussian

...
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GLM: link functions

Yi|(xi,β, φ) ∼ distribution(function(xTi β), φ),

I Most used link functions :
connection between Yi and xTi β

I to restrict f(xTi β) to belong to [0,∞[:
. log link: f(z) = ez

I to restrict f(xTi β) to belong to [0, 1]:
. logit link: f(z) = ez/(1 + ez) = 1/(1 + e−z) where z is positive
. probit link: f(z) = Φ(z), where Φ denotes the N(0, 1).
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Distribution for dichotomous variates: Bernoulli
Example:
in Jones (Unpublished BSc dissertation, University of Southampton, 1975), the main
outcome is the presence/absence of bronchitis:

Sample of 212 men in Cardiff: i = 1 i = 2 i = 3 · · · i = 212

�B �B B · · · �B
yi 0 0 1 · · · 0

If
I n independent experiments,
I outcome of each experiment is dichotomous (success/failure),
I the probability of success π is the same for all experiments,

then, each dichotomous experiment, Yi, follows a Bernoulli distribution with
parameter π:

Yi ∼ Bernoulli(π)

P (Yi = 1) = π

P (Yi = 0) = 1− π
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Logistic regression: GLM for dichotomous variates
Example:
in Jones (Unpublished BSc dissertation, University of Southampton, 1975), the main
outcome is the presence/absence of bronchitis as a function of the daily number of
smoked cigarettes (X1) and level of pollution (X2):

Sample of 212 men in Cardiff: i = 1 i = 2 i = 3 · · · i = 212

�B �B B · · · �B
yi 0 0 1 · · · 0
x1i 5.15 0 2.5 0.9
x2i 67.1 66.9 66.7 55.4

If
I n independent experiments,
I outcome of each experiment is dichotomous (success/failure),
I the probability of success π is the same for all experiments given the

covariates,
then, each dichotomous experiment, Yi, follows a Bernoulli distribution with
parameter πi:

Yi ∼ Bernoulli(πi) where πi =
ex
T
i β

1 + ex
T
i
β

P (Yi = 1) = πi

P (Yi = 0) = 1− πi
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Logistic regression: predictions and interpretation of β
Example:
Model the probability of presence of bronchitis as a function of the daily number of
smoked cigarettes (X1) :

P (Yi = 1) = πi =
eβ0+β1xi1

1 + eβ0+β1xi1

Daily number of cigarettes
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0 5 10 15 20 25 30

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.2839832 0.27305505 -8.364552 6.034375e-17
cigs 0.2093618 0.03760466 5.567442 2.585062e-08

I π̂0cig = eβ̂0

1+eβ̂0
⇔

π̂
0cig

1−π̂
0cig

= eβ̂0

I π̂1cig = eβ̂0+β̂1

1+eβ̂0+β̂1
⇔

π̂
1cig

1−π̂
1cig

= eβ̂0+β̂1

I

π̂
1cig

1−π̂
1cig

π̂
0cig

1−π̂
0cig

= eβ̂0+β̂1

eβ̂0
= eβ̂1 (Odd ratio)

I H01: β0 = 0 versus H11: β0 6= 0
H02: β1 = 0 versus H12: β1 6= 0
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Logistic regression: model check

I pearson residuals (yi − π̂)/
√

Var(π̂),
I deviance residuals [Default in R],
I randomised normalised quantile residuals [Default in package gamlss()]
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Distribution for count data: Poisson
Example:
Interest for the number of high school students diagnosed with an infectious disease

Sample of 115 days: t = 1 t = 2 t = 3 · · · t = 115

yi 6 8 12 · · · 0

If, during a time interval or in a given area,
I events occur independently,
I at the same rate,
I and the probability of an event to occur in a small interval (area) is

proportional to the length of the interval (size of the area),

then,
I a count occurring in a fixed time interval or in a given area, Y , may be

modelled by means of a Poisson distribution with parameter µ:

Y ∼ Poisson(µ) where µ = E[Y ] = Var[Y ],

I the probability of observing x events during a fixed time interval or in a
given area is given by

P (Y = y|µ) =
µye−µ

y!
.
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Poisson regression: GLM for count data
Example:
Interest for the number of high school students diagnosed with an infectious disease as a
function of the number of days from the initial outbreak

Sample of 115 days: t = 1 t = 2 t = 3 · · · t = 115

yt 6 8 12 · · · 0
t 1 2 3 · · · 115

If, during a time interval or in a given area,
I events occur independently given the covariates,
I at the same rate given the covariates,
I and the probability of an event to occur in a small interval (area) is

proportional to the length of the interval (size of the area) given the
covariates,

then,
I each count occurring in a fixed time interval or in a given area, Yt, may be

modelled by means of a Poisson distribution with parameter µt:

Yt ∼ Poisson(µt) where µt = E[Y ] = Var[Y ] = ex
T
i β,

I the probability of observing y during the fixed time interval or in the given
area is given by

P (Yt = yt|µt) =
µytt e

−µt

yt!
.
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Poisson regression: predictions and interpretation of β
Example:
Model the mean count of diagnosed students, µt, as a function of the number of days
from the outbreak (T ) :

µt = eβ0+β1t

Days since initial outbreak

N
u
m
b
er

o
f
d
ia
g
n
os
ed

st
u
d
en
ts

0

1

2

3

4

5

6

7

8

9

10

11

12

0 20 40 60 80 100 120

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.99023497 0.083935207 23.71156 2.739875e-124
day -0.01746317 0.001726709 -10.11356 4.810392e-24

I µ̂day0 = eβ̂0

I µ̂day1 = eβ̂0+β̂1

I
µ̂

day1

µ̂
day0

= eβ̂0+β̂1

eβ̂0
= eβ̂1

I H01: β0 = 0 versus H11: β0 6= 0
H02: β1 = 0 versus H12: β1 6= 0
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Poisson regression: model check

I pearson residuals (yi − π̂)/
√

Var(π̂),
I deviance residuals [Default in R],
I randomised normalised quantile residuals [Default in package gamlss()]
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