Section 1: Logistic regression

We will analyse the data collected by Jones (Unpublished BSc dissertation, University of Southampton, 1975). The aim of the study was to define if the probability of having Bronchitis is influenced by smoking and/or pollution.

The data are stored under data/Bronchitis.csv and contains information on 212 participants.

Section 1.1: importation and descriptive analysis

Lets starts by

  • importing the data set Bronchitis with the function read.csv()
  • displaying bron (a dichotomous variable which equals 1 for participants having bronchitis and 0 otherwise) as a function of cigs, the number of cigarettes smoked daily.
Bronchitis = read.csv("data/Bronchitis.csv",header=TRUE)
plot(Bronchitis$cigs,Bronchitis$bron,col="blue4",
        ylab = "Absence/Presense of Bronchitis", xlab = "Daily number of cigarettes")
abline(h=c(0,1),col="light blue")

Section 1.2: Model fit

Lets

  • fit a logistic model by means the function glm() and by means of the function gamlss() of the library gamlss.
  • display and analyse the results of the glm function : Use the function summary() to display the results of an R object of class glm.
fit.glm = glm(bron~cigs,data=Bronchitis,family=binomial)

library(gamlss)
fit.gamlss = gamlss(bron~cigs,data=Bronchitis,family=BI)
## GAMLSS-RS iteration 1: Global Deviance = 181.7072 
## GAMLSS-RS iteration 2: Global Deviance = 181.7072
summary(fit.glm)
## 
## Call:
## glm(formula = bron ~ cigs, family = binomial, data = Bronchitis)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4418  -0.5472  -0.4653  -0.4405   2.1822  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.2840     0.2731  -8.365  < 2e-16 ***
## cigs          0.2094     0.0376   5.567 2.59e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 221.78  on 211  degrees of freedom
## Residual deviance: 181.71  on 210  degrees of freedom
## AIC: 185.71
## 
## Number of Fisher Scoring iterations: 4

Let's now define the estimated probability of having bronchitis for any number of daily smoked cigarette and display the corresponding logistic curve on a plot:

plot(Bronchitis$cigs,Bronchitis$bron,col="blue4",
        ylab = "Absence/Presense of Bronchitis", xlab = "Daily number of cigarettes")
abline(h=c(0,1),col="light blue")

axe.x = seq(0,40,length=1000)
f.x = exp(fit.glm$coef[1]+axe.x*fit.glm$coef[2])/(1+exp(fit.glm$coef[1]+axe.x*fit.glm$coef[2]))
lines(axe.x,f.x,col="pink2",lwd=2)

Section 1.3: Model selection

As for linear models, model selection may be done by means of the function anova() used on the glm object of interest.

anova(fit.glm,test="LRT")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: bron
## 
## Terms added sequentially (first to last)
## 
## 
##      Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
## NULL                   211     221.78             
## cigs  1    40.07       210     181.71 2.45e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Section 1.3: Model check

Lets assess is the model fit seems satisfactory by means

  • of the analysis of deviance residuals (function plot() on an object of class glm,
  • of the analysis of randomised normalised quantile residuals (function plot() on an object of class gamlss,
# deviance
par(mfrow=c(2,2),mar=c(3,5,3,0))
plot(fit.glm)

# randomised normalised quantile residuals
plot(gamlss(bron~cigs,data=Bronchitis,family=BI))
## GAMLSS-RS iteration 1: Global Deviance = 181.7072 
## GAMLSS-RS iteration 2: Global Deviance = 181.7072

## ******************************************************************
##   Summary of the Randomised Quantile Residuals
##                            mean   =  0.005573493 
##                        variance   =  0.9643141 
##                coef. of skewness  =  0.2236313 
##                coef. of kurtosis  =  2.834737 
## Filliben correlation coefficient  =  0.9967767 
## ******************************************************************

Section 1.4: Fun

# long format:
long = data.frame(mi = rep(c("MI","No MI"),c(104+189,11037+11034)),
                  treatment = rep(c("Aspirin","Placebo","Aspirin","Placebo"),c(104,189,11037,11034)))
# short format: 2 by 2 table
table2by2 = table(long$treatment,long$mi)

#
chisq.test(table2by2)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table2by2
## X-squared = 23.782, df = 1, p-value = 1.079e-06
prop.test(table2by2[,"MI"],apply(table2by2,1,sum))
## 
##  2-sample test for equality of proportions with continuity correction
## 
## data:  table2by2[, "MI"] out of apply(table2by2, 1, sum)
## X-squared = 23.782, df = 1, p-value = 1.079e-06
## alternative hypothesis: two.sided
## 95 percent confidence interval:
##  -0.010570828 -0.004440228
## sample estimates:
##      prop 1      prop 2 
## 0.009334889 0.016840417
summary(glm(I(mi=="MI")~treatment,data=long,family="binomial"))
## 
## Call:
## glm(formula = I(mi == "MI") ~ treatment, family = "binomial", 
##     data = long)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.1843  -0.1843  -0.1370  -0.1370   3.0574  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -4.66462    0.09852 -47.348  < 2e-16 ***
## treatmentPlacebo  0.59763    0.12283   4.865 1.14e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3122.5  on 22363  degrees of freedom
## Residual deviance: 3097.8  on 22362  degrees of freedom
## AIC: 3101.8
## 
## Number of Fisher Scoring iterations: 7

Section 2: Poisson regression

The dataset students.csv shows the number of high school students diagnosed with an infectious disease for each day from the initial disease outbreak.

Section 2.2: Importation

Lets

  • import the dataset by means of the function read.csv()
  • display the daily number of students diagnosed with the disease (variable cases) as a function of the days since the outbreak (variable day).
students = read.csv("data/students.csv",header=TRUE)
plot(students$day,students$cases,col="blue4",
        ylab = "Number of diagnosed students", xlab = "Days since initial outbreak")
abline(h=c(0),col="light blue")

Section 2.2: Model fit

Lets

  • fit a poisson model by means the function glm() and by means of the function gamlss() of the library gamlss.
  • display and analyse the results of the glm function : Use the function summary() to display the results of an R object of class glm.
fit.glm = glm(cases~day,data=students,family=poisson)

library(gamlss)
fit.gamlss = gamlss(cases~day,data=students,,family=PO)
## GAMLSS-RS iteration 1: Global Deviance = 389.1082 
## GAMLSS-RS iteration 2: Global Deviance = 389.1082
summary(fit.glm)
## 
## Call:
## glm(formula = cases ~ day, family = poisson, data = students)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.00482  -0.85719  -0.09331   0.63969   1.73696  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.990235   0.083935   23.71   <2e-16 ***
## day         -0.017463   0.001727  -10.11   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 215.36  on 108  degrees of freedom
## Residual deviance: 101.17  on 107  degrees of freedom
## AIC: 393.11
## 
## Number of Fisher Scoring iterations: 5

Let's now define the estimated probability of having bronchitis for any number of daily smoked cigarette and display the corresponding logistic curve on a plot:

plot(students$day,students$cases,col="blue4",
        ylab = "Number of diagnosed students", xlab = "Days since initial outbreak")
abline(h=c(0),col="light blue")

axe.x = seq(0,120,length=1000)
f.x = exp(fit.glm$coef[1]+axe.x*fit.glm$coef[2])
lines(axe.x,f.x,col="pink2",lwd=2)

Section 2.3: Model selection

As for linear models, model selection may be done by means of the function anova() used on the glm object of interest.

anova(fit.glm,test="LRT")
## Analysis of Deviance Table
## 
## Model: poisson, link: log
## 
## Response: cases
## 
## Terms added sequentially (first to last)
## 
## 
##      Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
## NULL                   108     215.36              
## day   1   114.18       107     101.17 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Section 2.3: Model check

Lets assess is the model fit seems satisfactory by means

  • of the analysis of deviance residuals (function plot() on an object of class glm,
  • of the analysis of randomised normalised quantile residuals (function plot() on an object of class gamlss,
# deviance
par(mfrow=c(2,2),mar=c(3,5,3,0))
plot(fit.glm)

# randomised normalised quantile residuals
plot(fit.gamlss)

## ******************************************************************
##   Summary of the Randomised Quantile Residuals
##                            mean   =  0.02093209 
##                        variance   =  0.8139587 
##                coef. of skewness  =  -0.1539283 
##                coef. of kurtosis  =  2.220219 
## Filliben correlation coefficient  =  0.9916138 
## ******************************************************************

Section 6: Practicals

(i) Bronchitis.csv

Analyse further the Bronchitis data of Jones (1975) by

  • first investigating if the probability of having bronchitis also depends on pollution (variable poll),
  • second investigating if there is an interaction between the variables cigs and poll.

(ii) myocardialinfarction.csv

The file myocardialinfarction.csv indicates if a participant had a myocardial infarction attack (variable infarction) as well the participant's treatment (variable treatment).

Does Aspirin decrease the probability to have a myocardial infarction attack ?

(ii) crabs.csv

This data set is derived from Agresti (2007, Table 3.2, pp.76-77). It gives 6 variables for each of 173 female horseshoe crabs:

  • Explanatory variables that are thought to affect this included the female crab’s color (C), spine condition (S), weightweight (Wt)
  • C: the crab's colour,
  • S: the crab's spine condition,
  • Wt: the crab's weight,
  • W: the crab's carapace width,
  • Sa: the response outcome, i.e., the number of satellites.

Check if the width of female's back can explain the number of satellites attached by fitting a Poisson regression model with width.