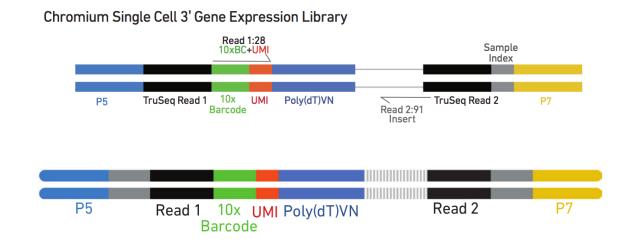


Alignment and feature counting

Ashley Sawle July 2021


Single Cell RNAseq Analysis Workflow

10x library file structure

The 10x library contains four pieces of information, in the form of DNA sequences, for each "read".

- **sample index** identifies the library, with one or two indexes per sample
- 10x barcode identifies the droplet in the library
- UMI identifies the transcript molecule within a cell and gene
- insert the transcript molecule

Raw fastq files

The sequences for any given fragment will generally be delivered in 3 or 4 files:

- I1: I7 sample index
- I2: I5 sample index if present (dual indexing only)
- R1: 10x barcode + UMI
- R2: insert sequence

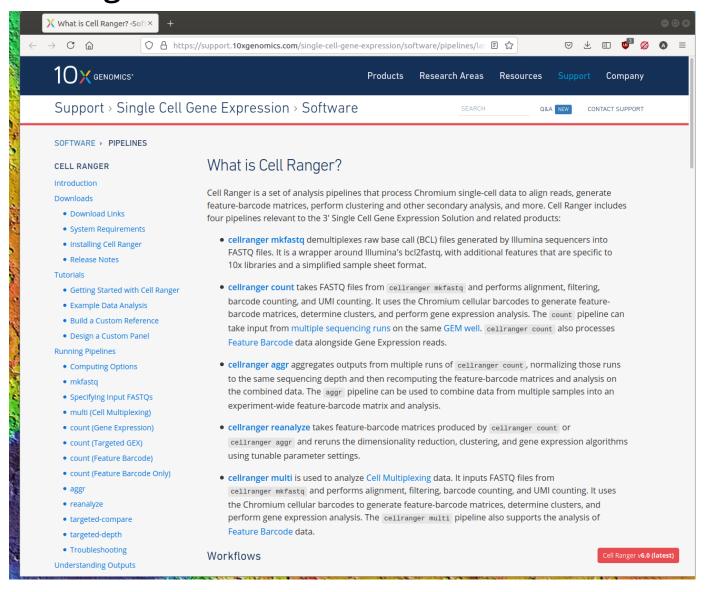
QC of Raw Reads

■ FASTQC:

Alignment and counting

The first steps in the analysis of single cell RNAseq data:

- Align reads to genome
- Annotate reads with feature (gene)
- Quantify gene expression


Cell Ranger

- 10x Cell Ranger This not only carries out the alignment and feature counting, but will also:
 - Call cells
 - Generate a summary report in html format
 - Generate a "cloupe" file

Alternative methods include:

- STAR solo:
 - Generates outputs very similar to CellRanger minus the cloupe file and the QC report
 - Will run with lower memory requirements in a shorter time than Cell Ranger
- Alevin:
 - Based on the popular Salmon tool for bulk RNAseq feature counting
 - Alevin supports both 10x-Chromium and Drop-seq derived data

Obtaining Cell Ranger

Cell Ranger tools

Cell Ranger includes a number of different tools for analysing scRNAseq data, including:

- cellranger mkref for making custom references
- cellranger count for aligning reads and generating a count matrix
- cellranger aggr for combining multiple samples and normalising the counts

Preparing the raw fastq files

Cell Ranger requires the fastq file names to follow a convention:

```
<SampleName>_S<SampleNumber>_L00<Lane>_<Read>_001.fastq.gz
```

e.g. for a single sample in the Caron data set we have:

```
SRR9264343_S0_L001_I1_001.fastq.gz
SRR9264343_S0_L001_R1_001.fastq.gz
SRR9264343_S0_L001_R2_001.fastq.gz
```

Genome/Transcriptome Reference

As with other aligners Cell Ranger requires the information about the genome and transcriptome of interest to be provided in a specific format.

- Obtain from the 10x website for human or mouse (or both PDX)
- Build a custom reference with cellranger mkref

Running cellranger count

- Computationally very intensive
- High memory requirements

```
File Edit View Search Terminal Help

%h%-$

%h%-$

%h%-$ cellranger count --id=SRR9264343 \

--transcriptome=refdata-gex-mm10-2020-A \

--fastqs=fastq \

--sample=SRR9264343 \

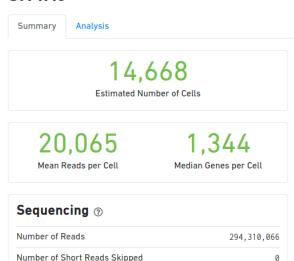
--localcores=8 \

--localmem=64
```

One directory per sample

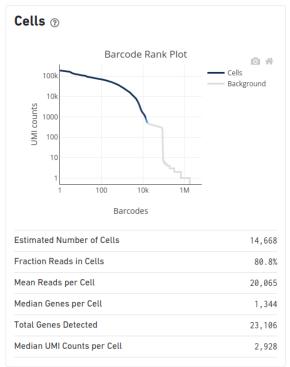
```
File Edit View Search Terminal Help
%h%-$ ..
%h%-$ ls SRR9264343/
cmdline
_
filelist
finalstate
invocation
_jobmode
_log
mrosource
outs
perf
sitecheck
tags
_timestamp
uuid
vdrkill
versions
```

```
File Edit View Search Terminal Help
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```


```
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw feature_bc_matrix.h5

web_summary.html
%h%-$
```

Cell Ranger report



SITTA6

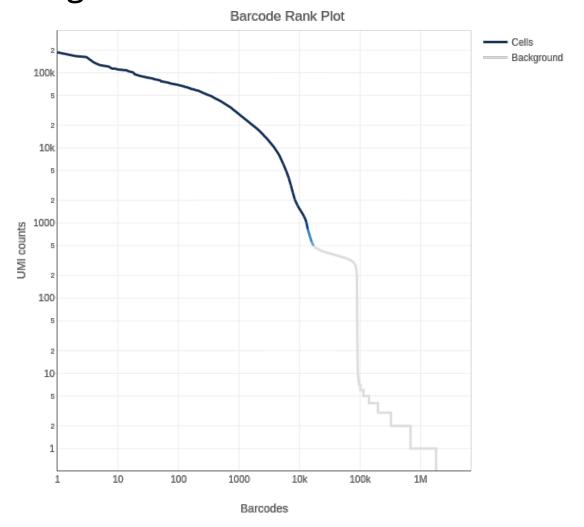
Number of Reads	294,310,066
Number of Short Reads Skipped	0
Valid Barcodes	97.7%
Valid UMIs	100.0%
Sequencing Saturation	18.6%
Q30 Bases in Barcode	96.1%
Q30 Bases in RNA Read	94.6%
Q30 Bases in UMI	95.7%

Mapping ③	
Reads Mapped to Genome	93.6%
Reads Mapped Confidently to Genome	89.7%

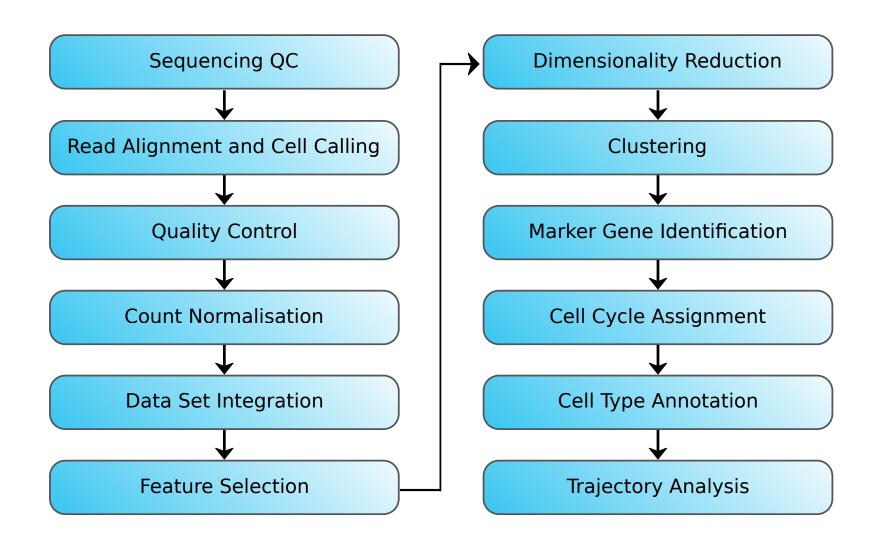
Sample	
Sample ID	SITTA6
Sample Description	

```
__versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

Loupe Browser


```
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

```
__versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```


```
File Edit View Search Terminal Help
 versions
%h%-$
%h%-$ ls SRR9264343/outs/
cloupe.cloupe
filtered_feature_bc_matrix.h5
metrics summary.csv
molecule_info.h5
possorted genome bam.bam
possorted genome bam.bam.bai
raw feature bc matrix.h5
web_summary.html
%h%-$
%h%-$ ls SRR9264343/outs/raw_feature_bc_matrix
```

```
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

Cell Ranger cell calling

Single Cell RNAseq Analysis Workflow

