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HTS Applications - Overview
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https://emea.illumina.com/content/dam/illumina-marketing/documents/applications/ngs-library-prep/for-all-you-seq-rna.pdf
https://emea.illumina.com/content/dam/illumina-marketing/documents/applications/ngs-library-prep/for-all-you-seq-rna.pdf
https://emea.illumina.com/content/dam/illumina-marketing/documents/applications/ngs-library-prep/for-all-you-seq-rna.pdf

RNAseq Workflow
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Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57-63.
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Designing the right experiment

A good experiment should:

® Have clear objectives

® Have sufficient power

® Be amenable to statisical analysis
® Be reproducible

® More on experimental design later
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Designing the right experiment

Practical considerations for RNAseq

® Coverage: how many reads?

® Read length & structure: Long or short reads? Paired or Single end?
® Library preparation method: Poly-A, Ribominus, other?

® Controlling for batch effects
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Designing the right experiment - How many reads do we need?

The coverage is defined as:

Read Length X Number of Reads
Length of Target Sequence

The amount of sequencing needed for a given sample is determined by the goals of the experiment and
the nature of the RNA sample.

® For a general view of differential expression: 5-25 million reads per sample

m For alternative splicing and lowly expressed genes: 30-60 million reads per sample.

® |n-depth view of the transcriptome/assemble new transcripts: 100-200 million reads

m Targeted RNA expression requires fewer reads.

® MiRNA-Seq or Small RNA Analysis require even fewer reads.
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Designing the right experiment - Read length

Long or short reads? Paired or Single end?

The answer depends on the experiment:
m Gene expression - typically just a short read e.g. 50/75 bp; SE or PE.
m kmer-based quantification of Gene Expression (Salmon etc.) - benefits from PE.

® Transcriptome Analysis - longer paired-end reads (such as 2 x 75 bp).

m Small RNA Analysis - short single read, e.g. SE50 - will need trimming.
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Designing the right experiment - Batch effects

® Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

m Batch effects are problematic if they are confounded with the experimental variable.
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Designing the right experiment - Batch effects
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Designing the right experiment - Batch effects
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Designing the right experiment - Batch effects

® Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

m Batch effects are problematic if they are confounded with the experimental variable.

m Batch effects that are randomly distributed across experimental variables can be controlled for.
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Designing the right experiment - Batch effects

Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

Batch effects are problematic if they are confounded with the experimental variable.
Batch effects that are randomly distributed across experimental variables can be controlled for.

Randomise all technical steps in data generation in order to avoid batch effects.
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Designing the right experiment - Batch effects

Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

Batch effects are problematic if they are confounded with the experimental variable.
Batch effects that are randomly distributed across experimental variables can be controlled for.

Randomise all technical steps in data generation in order to avoid batch effects.
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Designing the right experiment - Batch effects

Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

Batch effects are problematic if they are confounded with the experimental variable.
Batch effects that are randomly distributed across experimental variables can be controlled for.

Randomise all technical steps in data generation in order to avoid batch effects.
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Designing the right experiment - Batch effects

Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

Batch effects are problematic if they are confounded with the experimental variable.
m Batch effects that are randomly distributed across experimental variables can be controlled for.
®m Randomise all technical steps in data generation in order to avoid batch effects

® Record everything: Age, sex, litter, cell passage ..
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RNAseq Workflow
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Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57-63.
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Library preparation
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Library preparation

Poly-A Selection

Poly-A transcripts e.g.:
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Poly-A transcripts + Other mRNAs e.g.:

m tRNAs
B mature miRNAs
m piRNAs
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RNAseq Workflow
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Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57-63.
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RNAseq Workflow
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Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57-63.
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Case Study

Transcriptomic Profiling of Mouse
Brain During Acute and Chronic
Infections by Toxoplasma gondii
Oocysts

Rui-Si Hu'?, Jun-Jun He', Hany M. Elsheikha’, Yang Zou’, Muhammad Ehsan’,
Qiao-Ni Ma', Xing-Quan Zhu'* and Wei Cong**

"Acute infection"  "Chronic infection" Matched control groups

PR
(11

T. gondii infection T. gondii infection Sham inoculation Sham inoculation
for 11 days for 33 days for 11 days for 33 days

RNA-seq
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Differential Gene Expression Analysis Workflow
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DESeq2 analysis workflow

Estimate size factors

'

Estimate gene-wise
dispersion

| ]
| ]

¢
[Fit curve to gene-wise]
| ]
| ]

dispersion estimates

'

Shrink gene-wise
dispersion estimates

'

GLM fit for each gene
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Normalisation

® Quantification estimates the relative read counts for each gene

® Does this accurately represent the original population of RNAs?

® The relationship between counts and RNA expression is not the same for all genes across all samples

Library Size Gene properties

Differing sequencing depth

Length, GC content, sequence

Library composition

Highly expressed genes overrepresented
at the cost of lowly expressed genes

“Composition Bias”

N

~
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Normalisation - Geometric mean scaling factor

m Used by DESeq2

1. For each gene calculate the geometric mean across all samples

2. For each gene in each sample, normalise by dividing by the geometric mean for that gene

3. For each sample calculate the scaling factor as the median of the normalised counts
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. J/
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[ Estimate gene-wise
dispersion

/

( )
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Differential Expression

® Comparing feature abundance under different conditions
® Assumes linearity of signal

® When feature=gene, well-established pre- and post-analysis strategies exist

10* | Sensitivity and dynamic range
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Reference transcripts per 100 ng mRNA

Mortazavi, A. et al (2008) Nature Methods
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Differential Expression

Simple difference in means
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Differential Expression - Modelling population distributions

® Normal (Gaussian) Distribution - t-test
m Two parameters - mean and sd (sd2 = variance)

m Suitable for microarray data but not for RNAseq data
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Differential Expression - Modelling population distributions

® Count data - Poisson distribution
m One parameter - mean (A)

B yariance = mean

e h= 1
o A= 4
g_ @ A=10
NS B
>I<\./Io
o
g_
S |
()
| [ [ I |
0 5 10 15 20
k
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Differential Expression - Modelling population distributions

( 3\

m Use the Negative Binomial distribution N R TN N N—

Estimate size factors 108 - |
) ' . ®Inthe NB distribution mean not equal to
Estimate gene-wise .
dispersion ) variance
| 8
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Fit curve to gene-wise ©
| dispersion estimates ) >
| m dispersion describes how variance
Shrink gene-wise | changes with mean

dispersion estimates

/

( )
GLM fit for each gene

. J

Anders, S. & Huber, W. (2010) Genome Biology
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Differential Expression - linear models

® Calculate coefficients describing change in gene expression

m Linear Model — Generalized Linear Model
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Differential Expression - linear models

® Calculate coefficients describing change in gene expression

m Linear Model — General Linear Model

Expression
4

/

GLM fit for each gene

& J

| |
Control Treatment

Group
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Differential Expression - linear models

® Calculate coefficients describing change in gene expression

m Linear Model — General Linear Model

/

GLM fit for each gene

Expression

Group

33/38



Towards biological meaning - hierachical clustering
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Towards biological meaning - Gene Ontology testing

transport -
translation - o
small molecule metabolic process - .
rRNA processing -
ribosome biogenesis -

ribosomal small subunit biogenesis -

GO term

ribonucleoprotein complex biogenesis - [ ]
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Towards biological meaning - Gene Set Enrichment Analysis

p
Molecular Profile Data
Enriched Sets
, -
- e
Gene Set Database
L.

http://software.broadinstitute.org/gsea

H (hallmark gene sets, 50 gene sets)
C1 (positional gene sets, 326 gene sets)

by chromosome: 1234567891011 1213141516171819202122XY

C2 (curated gene sets, 4762 gene sets)
CGP (chemical and genetic perturbations, 3433 gene sets)
CP (Canonical pathways, 1329 gene sets)
CP:BIOCARTA (BioCarta gene sets, 217 gene sets)
CP:KEGG (KEGG gene sets, 186 gene sets)
CP:REACTOME (Reactome gene sets, 674 gene sets)

C3 (motif gene sets, 836 gene sets)
MIR (microRNA targets, 221 gene sets)

TFT (transcription factor targets, 615 gene sets)

C4 (computational gene sets, 858 gene sets)
CGN (cancer gene neighborhoods, 427 gene sets)

CM (cancer modules, 431 gene sets)

C5 (GO gene sets, 5917 gene sets)
BP (GO biological process, 4436 gene sets)
CC (GO cellular component, 580 gene sets)

MF (GO molecular function, 901 gene sets)

C6 (oncogenic signatures, 189 gene sets)

C7 (immunologic signatures, 4872 gene sets)
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Towards biological meaning - Pathway Analysis
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