Introduction to Differential Gene Expression Analysis in R

CRUK Summer School 2021

Ashley Sawle
July 2021
HTS Applications - Overview

DNA Sequencing
- Genome Assembly
- SNPs/SVs/CNVs
- DNA methylation
- DNA-protein interactions (ChIPseq)
- Chromatin Modification (ATAC-seq/ChIPseq)

RNA Sequencing
- Transcriptome Assembly
- Differential Gene Expression
- Fusion Genes
- Splice variants

Single-Cell
- RNA/DNA
- Low-level RNA/DNA detection
- Cell-type classification
- Dissection of heterogenous cell populations
RNAseq Workflow

Experimental Design

Library Preparation

Sequencing

Bioinformatics Analysis

Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
Designing the right experiment

A good experiment should:

- Have clear objectives
- Have sufficient power
- Be amenable to statistical analysis
- Be reproducible
- More on experimental design later
Designing the right experiment

Practical considerations for RNAseq

- Coverage: how many reads?
- Read length & structure: Long or short reads? Paired or Single end?
- Library preparation method: Poly-A, Ribominus, other?
- Controlling for batch effects
Designing the right experiment - How many reads do we need?

The coverage is defined as:

\[
\frac{\text{Read Length} \times \text{Number of Reads}}{\text{Length of Target Sequence}}
\]

The amount of sequencing needed for a given sample is determined by the goals of the experiment and the nature of the RNA sample.

- For a general view of differential expression: 5–25 million reads per sample
- For alternative splicing and lowly expressed genes: 30–60 million reads per sample.
- In-depth view of the transcriptome/assemble new transcripts: 100–200 million reads
- Targeted RNA expression requires fewer reads.
- miRNA-Seq or Small RNA Analysis require even fewer reads.
Designing the right experiment - Read length

Long or short reads? Paired or Single end?

The answer depends on the experiment:

- Gene expression – typically just a short read e.g. 50/75 bp; SE or PE.
- kmer-based quantification of Gene Expression (Salmon etc.) - benefits from PE.
- Transcriptome Analysis – longer paired-end reads (such as 2 x 75 bp).
- Small RNA Analysis – short single read, e.g. SE50 - will need trimming.
Designing the right experiment - Batch effects

- Batch effects are sub-groups of measurements that have qualitatively different behavior across conditions and are unrelated to the biological or scientific variables in a study.

- Batch effects are problematic if they are confounded with the experimental variable.
Designing the right experiment - Batch effects
Designing the right experiment - Batch effects

Sample	Litter ID
Treatment Rep4 | 20/04-143
Treatment Rep1 | 20/04-143
Treatment Rep2 | 20/04-143
Treatment Rep5 | 20/04-143
Treatment Rep3 | 20/04-143
Treatment Rep6 | 20/04-143
Control Rep1 | 06/04-121
Control Rep2 | 06/04-121
Control Rep6 | 06/04-121
Control Rep4 | 06/04-121
Control Rep3 | 06/04-121
Control Rep5 | 06/04-121
Designing the right experiment - Batch effects

- Batch effects are sub-groups of measurements that have qualitatively different behavior across conditions and are unrelated to the biological or scientific variables in a study.
- Batch effects are problematic if they are confounded with the experimental variable.
- Batch effects that are randomly distributed across experimental variables can be controlled for.
Designing the right experiment - Batch effects

- Batch effects are sub-groups of measurements that have qualitatively different behavior across conditions and are unrelated to the biological or scientific variables in a study.

- Batch effects are problematic if they are confounded with the experimental variable.

- Batch effects that are randomly distributed across experimental variables can be controlled for.

- Randomise all technical steps in data generation in order to avoid batch effects.
Designing the right experiment - Batch effects

- Batch effects are sub-groups of measurements that have qualitatively different behavior across conditions and are unrelated to the biological or scientific variables in a study.

- Batch effects are problematic if they are confounded with the experimental variable.

- Batch effects that are randomly distributed across experimental variables can be controlled for.

- Randomise all technical steps in data generation in order to avoid batch effects.
Designing the right experiment - Batch effects

- Batch effects are sub-groups of measurements that have qualitatively different behavior across conditions and are unrelated to the biological or scientific variables in a study.

- Batch effects are problematic if they are confounded with the experimental variable.

- Batch effects that are randomly distributed across experimental variables can be controlled for.

- Randomise all technical steps in data generation in order to avoid batch effects.
Designing the right experiment - Batch effects

- Batch effects are sub-groups of measurements that have qualitatively different behavior across conditions and are unrelated to the biological or scientific variables in a study.
- Batch effects are problematic if they are confounded with the experimental variable.
- Batch effects that are randomly distributed across experimental variables can be controlled for.
- Randomise all technical steps in data generation in order to avoid batch effects.
- **Record everything**: Age, sex, litter, cell passage ..
RNAseq Workflow

- Experimental Design
- Library Preparation
- Sequencing
- Bioinformatics Analysis

Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
Library preparation

Total RNA extraction

- Ribosomal RNA
- Poly-A transcripts
- Other RNAs e.g. tRNA, miRNA etc.
Library preparation

Poly-A Selection

Poly-A transcripts e.g.:
- mRNAs
- immature miRNAs
- snoRNA

Ribominus selection

Poly-A transcripts + Other mRNAs e.g.:
- tRNAs
- mature miRNAs
- piRNAs
RNAseq Workflow

- **Experimental Design**
- **Library Preparation**
- **Sequencing**
- **Bioinformatics Analysis**

Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
RNAseq Workflow

Experimental Design

Library Preparation

Sequencing

Bioinformatics Analysis

Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
Transcriptomic Profiling of Mouse Brain During Acute and Chronic Infections by *Toxoplasma gondii* Oocysts

Rui-Si Hu, Jun-Jun He, Hany M. Elsheikha, Yang Zou, Muhammad Ehsan, Qiao-Ni Ma, Xing-Quan Zhu and Wei Cong

"Acute infection" "Chronic infection" Matched control groups

T. gondii infection for 11 days T. gondii infection for 33 days Sham inoculation for 11 days Sham inoculation for 33 days

RNA-seq
Differential Gene Expression Analysis Workflow

1. Raw Fastq data
2. Quality Control
3. Read alignment
4. Quality Control
5. Quantification of gene expression

- Data Exploration
- Differential Expression Analysis
- Gene Annotation
- Data Visualisation
- Gene Set testing
DESeq2 analysis workflow

1. Estimate size factors
2. Estimate gene-wise dispersion
3. Fit curve to gene-wise dispersion estimates
4. Shrink gene-wise dispersion estimates
5. GLM fit for each gene
Normalisation

- Quantification estimates the *relative* read counts for each gene
- Does this **accurately** represent the original population of RNAs?
- The relationship between counts and RNA expression is not the same for all genes across all samples

<table>
<thead>
<tr>
<th>Library Size</th>
<th>Gene properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differing sequencing depth</td>
<td>Length, GC content, sequence</td>
</tr>
</tbody>
</table>

Library composition

Highly expressed genes overrepresented at the cost of lowly expressed genes

“Composition Bias”
Normalisation - Geometric mean scaling factor

- Used by DESeq2

1. For each gene calculate the geometric mean across all samples
2. For each gene in each sample, normalise by dividing by the geometric mean for that gene
3. For each sample calculate the scaling factor as the median of the normalised counts
Differential Expression

- Comparing feature abundance under different conditions
- Assumes linearity of signal
- When feature=gene, well-established pre- and post-analysis strategies exist

![Graph showing Sensitivity and dynamic range with R² = 0.99](image)

Differential Expression

Simple difference in means

Replication introduces variation
Differential Expression - Modelling population distributions

- Normal (Gaussian) Distribution - t-test
- Two parameters - *mean* and *sd* ($sd^2 = variance$)
- Suitable for microarray data but not for RNAseq data
Differential Expression - Modelling population distributions

- Count data - Poisson distribution
- One parameter - $mean (\lambda)$
- $variance = mean$

![Graph showing Poisson distribution with different lambdas](image_url)
Differential Expression - Modelling population distributions

- Use the Negative Binomial distribution
- In the NB distribution mean not equal to variance
- Two parameters - mean and dispersion
- dispersion describes how variance changes with mean

Differential Expression - linear models

- Calculate coefficients describing change in gene expression
- Linear Model \(\rightarrow\) Generalized Linear Model
Differential Expression - linear models

- Calculate coefficients describing change in gene expression
- Linear Model → General Linear Model

![Diagram showing the process of calculating gene expression coefficients](image-url)
Differential Expression - linear models

- Calculate coefficients describing change in gene expression
- Linear Model → General Linear Model

Diagram:
- Estimate size factors
- Estimate gene-wise dispersion
- Fit curve to gene-wise dispersion estimates
- Shrink gene-wise dispersion estimates
- GLM fit for each gene

Graph:

- X-axis: Group
- Y-axis: Expression
- Points plotted on the graph represent gene expression levels across different groups.
Towards biological meaning - hierarchical clustering
Towards biological meaning - Gene Ontology testing
Towards biological meaning - Gene Set Enrichment Analysis

- **H** (hallmark gene sets, 50 gene sets)
- **C1** (positional gene sets, 326 gene sets)
 - by chromosome: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y
- **C2** (curated gene sets, 4762 gene sets)
 - **CGP** (chemical and genetic perturbations, 3433 gene sets)
 - **CP** (Canonical pathways, 1329 gene sets)
 - **CP:BIOCARTA** (BioCarta gene sets, 217 gene sets)
 - **CP:KEGG** (KEGG gene sets, 186 gene sets)
 - **CP:REACTOME** (Reactome gene sets, 674 gene sets)
- **C3** (motif gene sets, 836 gene sets)
 - **MIR** (microRNA targets, 221 gene sets)
 - **TFT** (transcription factor targets, 615 gene sets)
- **C4** (computational gene sets, 858 gene sets)
 - **CGN** (cancer gene neighborhoods, 427 gene sets)
 - **CM** (cancer modules, 431 gene sets)
- **C5** (GO gene sets, 5917 gene sets)
 - **BP** (GO biological process, 4436 gene sets)
 - **CC** (GO cellular component, 580 gene sets)
 - **MF** (GO molecular function, 901 gene sets)
- **C6** (oncogenic signatures, 189 gene sets)
- **C7** (immunologic signatures, 4872 gene sets)

http://software.broadinstitute.org/gsea
Towards biological meaning - Pathway Analysis