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https://emea.illumina.com/content/dam/illumina-marketing/documents/applications/ngs-library-prep/for-all-you-seq-rna.pdf
https://emea.illumina.com/content/dam/illumina-marketing/documents/applications/ngs-library-prep/for-all-you-seq-rna.pdf
https://emea.illumina.com/content/dam/illumina-marketing/documents/applications/ngs-library-prep/for-all-you-seq-rna.pdf
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Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
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Designing the right experiment

A good experiment should:
Have clear objectives

Have sufficient power

Be amenable to statisical analysis

Be reproducible

More on experimental design later
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Designing the right experiment

Practical considerations for RNAseq
Coverage: how many reads?

Read length & structure: Long or short reads? Paired or Single end?

Library preparation method: Poly-A, Ribominus, other?

Controlling for batch effects

·

·

·

·
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Designing the right experiment - How many reads do we need?

The coverage is defined as:

The amount of sequencing needed for a given sample is determined by the goals of the experiment and
the nature of the RNA sample.

Read Length × Number of Reads
Length of Target Sequence

For a general view of differential expression: 5–25 million reads per sample

For alternative splicing and lowly expressed genes: 30–60 million reads per sample.

In-depth view of the transcriptome/assemble new transcripts: 100–200 million reads

Targeted RNA expression requires fewer reads.

miRNA-Seq or Small RNA Analysis require even fewer reads.
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Designing the right experiment - Read length

Long or short reads? Paired or Single end?
The answer depends on the experiment:

Gene expression – typically just a short read e.g. 50/75 bp; SE or PE.

kmer-based quantification of Gene Expression (Salmon etc.) - benefits from PE.

Transcriptome Analysis – longer paired-end reads (such as 2 x 75 bp).

Small RNA Analysis – short single read, e.g. SE50 - will need trimming.
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·
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Designing the right experiment - Batch effects

Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

Batch effects are problematic if they are confounded with the experimental variable.

·

·
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Designing the right experiment - Batch effects
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Designing the right experiment - Batch effects
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Designing the right experiment - Batch effects

Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

Batch effects are problematic if they are confounded with the experimental variable.

Batch effects that are randomly distributed across experimental variables can be controlled for.
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Designing the right experiment - Batch effects

Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

Batch effects are problematic if they are confounded with the experimental variable.

Batch effects that are randomly distributed across experimental variables can be controlled for.

Randomise all technical steps in data generation in order to avoid batch effects

Record everything: Age, sex, litter, cell passage ..

·
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Experimental Design

Library Preparation

Sequencing

Bioinformatics Analysis

RNAseq Workflow

Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
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Library preparation

 - Ribosomal RNA

 - Poly-A transcripts

 - Other RNAs e.g. tRNA, miRNA etc.

Total RNA extraction
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Poly-A Selection

Poly-A transcripts e.g.:

Ribominus selection

Poly-A transcripts + Other mRNAs e.g.:

Library preparation

mRNAs

immature miRNAs

snoRNA

·
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Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
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Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
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Case Study
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Differential Gene Expression Analysis Workflow

Quantification of gene expression

Data Exploration

Quality Control

Read alignment

Raw Fastq data

Differential Expression Analysis

Gene Annotation

Data Visualisation

Gene Set testing

Quality Control
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DESeq2 analysis workflow
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Library Size

Differing sequencing depth

Gene properties

Length, GC content, sequence

Library composition

Highly expressed genes overrepresented
at the cost of lowly expressed genes

“Composition Bias”

Normalisation

Quantification estimates the relative read counts for each gene

Does this accurately represent the original population of RNAs?

The relationship between counts and RNA expression is not the same for all genes across all samples

·

·

·
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Normalisation - Geometric mean scaling factor

÷Read Counts Gene 1 Geometric Mean Gene 1

Read Counts Gene 2 Geometric Mean Gene 2÷
Read Counts Gene 3 Geometric Mean Gene 3÷
Read Counts Gene 4 Geometric Mean Gene 4÷

Read Counts Gene n Geometric Mean Gene n÷

M
e
d

ia
n

Sample A All Samples

Scaling Factor Sample A

Used by DESeq2·

1. For each gene calculate the geometric mean across all samples

2. For each gene in each sample, normalise by dividing by the geometric mean for that gene

3. For each sample calculate the scaling factor as the median of the normalised counts
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Differential Expression

Comparing feature abundance under different conditions

Assumes linearity of signal

When feature=gene, well-established pre- and post-analysis strategies exist

·

·

·

Mortazavi, A. et al (2008) Nature Methods
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Differential Expression

Simple difference in means

Replication introduces variation
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Differential Expression - Modelling population distributions

Normal (Gaussian) Distribution - t-test

Two parameters -  and  ( )

Suitable for microarray data but not for RNAseq data

·

· mean sd s = varianced2

·

28/38



Differential Expression - Modelling population distributions

Count data - Poisson distribution

One parameter - 

 = 

·

· mean (λ)

· variance mean

29/38



Differential Expression - Modelling population distributions

Use the Negative Binomial distribution

In the NB distribution  not equal to

Two paramenters -  and 

 describes how 
changes with 

·

· mean
variance

· mean dispersion

· dispersion variance
mean

Anders, S. & Huber, W. (2010) Genome Biology
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Differential Expression - linear models

Calculate coefficients describing change in gene expression

Linear Model  Generalized Linear Model

·

· →

31/38



Differential Expression - linear models

Calculate coefficients describing change in gene expression

Linear Model  General Linear Model

·

· →

32/38



Differential Expression - linear models
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Towards biological meaning - hierachical clustering
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Towards biological meaning - Gene Ontology testing
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Towards biological meaning - Gene Set Enrichment Analysis

http://software.broadinstitute.org/gsea
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Towards biological meaning - Pathway Analysis
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