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Genome Shotgun Sequencing and Assembly

Cloned genomes

Multiple genomes are sheared
into variable sized segments
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Commins J. et al, Biol Proced Online 11(1) 2015
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Mapping to reference sequence De Novo assembly

Recreate the genome with using prior

Recreate the genome with no prior knowledge
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Mapping is as good as reference used Problem with repeated regions, high coverage and long



Aligning short-reads to a reference genome

A few examples of widely used short read aligners:

e BWA ‘
e BWA-MEM2

. By g
e Bowtie2 MV%W@ W&

e GEM Sequence

Splice Aware:

e STAR
e HISAT2 ‘

e TopHat2
Map to genome
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(Splice Junction information from Genomic Annotation plus alighment to genome and
transcriptome)



Annotations: GTF/GFF

Resources: GENCODE annotation is made by

GENCODE merging the manual gene annotation
mm produced by the Ensembl-Havana team
\ v

and the Ensembl-genebuild automated
gene annotation.

RefSeq

e., Ensembl ———

exon intron exon

Gencode vs. Ensembl

- The gene annotation is the same in both files. The only exception is that the genes which
are common to the human chromosome X and Y PAR regions can be found twice in the
GENCODE GTF, while they are shown only for chromosome X in the Ensembl file.

- GENCODE GTF contains also APPRIS tags and the annotation are on the reference
chromosomes only

Always make sure that annotations match the genome FASTA file (the same version & source)



Pseudo Aligners

e Used for RNA-seq quantification at a transcript

level
o Kallisto (Bray et al., Nat. Biotech. 2016) 1
o Salmon (Patro et al., Nat. Methods 2017) I
o Sailfish

e Quantification estimates rather than base-to-base
alignment

!

e Can model sequencing bias, eg. GC-bias, fragment
length

e Fast, can handle multi-mapping

e Improved accuracy at transcript level

Evaluation and comparison of computational tools for
RNA-seq isoform quantification

Chi Zhang, Baohong Zhang, Lih-Ling Lin & Shanrong Zhao

BMC Genomics 18, Article number: 583 (2017) | Cite this article
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More than 90+ Short Read Alignhers
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https://www.ecseq.com/support/ngs/what-is-the-best-ngs-alignment-software
http://bioinformatics.oxfordjournals.org/content/30/13/1837.abstract

Features supported by the tools

Seed mm.

Non-seed
mm.

Var. seed
len.

Mapping
qual.

Gapped
align.

Colorspace
Splicing

SNP
tolerance

Bisulphite
reads

Bowtie Bowtie2

Up to
3
Qs AS
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BWA  SOAP2
Any U p2 to
Count | Count
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Yes PE
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PE: paired-end only, mm.: mismatches, QS: base quality score, count: total count of mismatches in the read, AS: alignment
score, and empty cells mean not supported.



BWA

Burrows-Wheeler Transform (BWT) algorithm with FM-index using suffix arrays.

BWA can map low-divergent sequences against a large reference genome, such as
the human genome. It consists of three algorithms:

o BWA-backtrack (Illumina sequence reads up to 100bp)
o BWA-SW (more sensitive when alignment gaps are frequent)
o BWA-MEM (maximum exact matches)

BWA-SW and BWA-MEM can map longer sequences (70bp to Mbp) and share
similar features such as long-read support and split alignment, but BWA-MEM,
which is the latest, is generally recommended for high-quality queries as it is
faster and more accurate.

BWA-MEM also has better performance than BWA-backtrack for 70-100 bp
[llumina reads.

Need to prepare a genome index

BWA-MEM?2 is significantly faster and a has a smaller memory footprint than

BWA-MEM
Li and Durbin, 2009, Bioinformatics



Bowtie2

Bowtie2 is a Burrows-Wheeler Transform (BWT) aligner and handles
reads longer than 50 nt.

The transform is performed by sorting all rotations of the test and
these acts as the index for the sequence. The aim is to find out from
which part of the genome a the ‘read’ originates.

Given a reference and a set of reads, this method reports at least one
good local alignment for each read if one exists.

Since genomes and sequencing datasets are usually large, dynamic
programing proves to be inefficient and high-memory machines are
required, with lots of secondary storage, etc.

Need to prepare a genome index.

Langmead and Salzberg, 2012, Nat. Methods



STAR

e Non-contiguous nature of transcripts, presence of splice-forms make
short-read (36-200 nt) RNA-seq alighment to a genome challenging.
o Reads contain mismatches, insertions and deletions caused by
genomic variation and sequencing errors.
o Mapping spliced sequence from non contiguous genomic regions.
o Multi-mapping reads
e Two steps: Seed searching and clustering/stitching/scoring (find MMP
-maximal mappable prefix using Suffix Arrays) |
. . . (a) Map Map again
e Fast splice aware aligner, high memory (RAM) WPt VP2
fOOtp]ﬁ'il’lt | 1 \ RNA-seq read
e Can detect chimeric transcripts
e Generate indices using a reference genome fasta,

and annotation gtf or gff from Ensembl/UCSC. oK AT Gengro
(b) (c)
Map Map

MMP 1 . Extend MMP 1 Trim

mismatches A-tail, or adapter,
or noor aualitv tail

Dobin et al., 2013 Bioinformatics



Before you align checklist

- Do | need splice-aware aligner?

- Am | using right genome version? (hg38 - human, mm10 -mouse?)
- Do annotations match the reference genome?

- Read manual, select parameters, check default settings

Standard alignment workflow

Reference Genome Annotations
FASTA GTF (optional)

Once per genome FASTQ
[

ormert

Aligned reads

BAM

Pseudo-alignment

Transcript abundance



Some useful concepts in short read

alignment

e Alignment Coverage and Depth
e Mappability
o Alignability
o Uniqueness
e Read Count Normalization
e File format specific tools: SAM/BAM files
o SAMtools
o Picard tools
e Mapping QC
o SAMStat
e Visualization
o IGV
e Downloading sequence data from repositories

o SRA toolkit



Mappability

Nonrepetitive sequence Mappable sequence
Organism Genome size (Mb) Size (Mb) Percentage Size (Mb) Percentage
Caenorhabditis elegans 100.28 87.01 86.8% 93.26 93.0%
Drosophila melanogaster 168.74 117.45 69.6% 121.40 71.9%
Mus musculus 2,654.91 1,438.61 54.2% 2:150.57 81.0%
Homo sapiens 3,080.44 1,462.69 47.5% 2,451.96 79.6%

Rozowsky, (2009)
e Not all of the genome is ‘available’ for mapping when reads are aligned

to the unmasked genome.

e Alignability: This provide a measure of how often the sequence found
at the particular location will align within the whole genome.

e Uniqueness: This is a direct measure of sequence uniqueness
throughout the reference genome.



Coverage and Depth

Coverage: The average number of reads Examples of good (left) and poor (right) sequencing
of a given length that align to or ‘cover’ ©°verage histegrams
known reference bases with the
assumption that the reads are
randomly distributed across the 1000
genome. |

‘ IQR= 12
Depth: redundancy of coverage or the |
total number of bases sequenced and | .ull“ ‘Ilh.. B " " “I """lllu.
aligned at a given reference position. Winsasws 05 usmnw o

Mapped Read Depth Mapped Read Depth
Increased depth of coverage rescues
inadequacies of sequencing methodes.

IQR=6
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Sims et al., 2014, Nat. Rev. Genet.



Lander-Waterman model of Coverage
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Coverage = Read Length * Number of reads / haploid Genome length



Normalised Counts

e Do not use RPKM (Reads Per Kilobase Million) and FPKM (Fragments
Per Kilobase Million) to express normalised counts in ChIP-seq (or
RNA-seq).

e CPM (Counts Per Million) and TPM (Transcripts Per MlIllion) is the
less biased way of normalising read counts.

e When calculating TPM, the only difference from RPKM is that you
normalize for gene/transcript length first, and then normalize for
sequencing depth second. However, the effects of this difference are
quite profound.

RPKM vs TPM

Lior Pachtor video


http://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/?utm_campaign=shareaholic&utm_medium=twitter&utm_source=socialnetwork
https://youtu.be/5NiFibnbE8o

Processing SAM / BAM files

e SAMtools provide various utilities for manipulating alighments in the
SAM format, including sorting, merging, indexing and generating
alignments in a per-position format.

O

O O O O O O O

import: SAM-to-BAM conversion

view: BAM-to-SAM conversion and sub alignment retrieval
sort: sorting alignment

merge: merging multiple sorted alignments

index: indexing sorted alignment

faidx: FASTA indexing and subsequence retrieval

tview: text alignment viewer

pileup: generating position-based output and consensus/indel
calling

e RSamTools package in Bioconductor allows similar functionality in R.


http://samtools.sourceforge.net/tview.shtml
http://samtools.sourceforge.net/pileup.shtml
http://samtools.sourceforge.net/cns0.shtml
http://samtools.sourceforge.net/cns0.shtml

Picard tools

e DPicard is a collection of Java-based command-line utilities that
manipulate sequencing data and formats such as SAM/BAM/CRAM
and VCF. It has a Java API (SAM-]JDK) for creating new programs that
read and write SAM files.

e The mark duplicate function is particularly useful.

Picard tools



https://broadinstitute.github.io/picard/command-line-overview.html

SAMStat for mapping QC

e SAMstatis a C program that plots Overview of SAMstat output
nucleotide overrepresentation and other Reported statstics
statistics in mapped and unmapped reads e atibution
and helps understand the relationship Nucleotide composition
between potential protocol biases and poor oo e s e readpestion

m applng Overepesenssl dinucleondesaions rea:
e It reports statistics for unmapped, poorly T, Moo e S poe
and accurately mapped reads separately.
e This allows for identification of a variety of
problems, such as remaining linker and
adaptor sequences that cause poor

mapping.

B p<1e-3(56.9% . 13708791) Q
B 1e-3<=p<1e-2(12.5%,3013556)
1e-2<=p <0.1(3.8%,910477)
. 0.1<=p<0.5 (0.5%,117162)
Il 05<= p<1(16.4%, 3948096)
Il Unmapped (9.9% , 2394614)

(b) Mismatches Insertions
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Lassmann et al., 2011, Bioinformatics. Posiion Postion



Visualization with IGV
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How to get external sequencing data via SRA

toolkit

Extract data sets from the Sequence Read Archive or dbGAP (NCBI

e These repositories store sequencing data in the SRA format

e Prefetch: fetch fastqdata

e Fastg-dump: Convert SRA data into fastq format

e sam-dump: Convert SRA data to SAM format

e sra-stat: Generate statistics about SRA data (quality distribution,
etc.)

e vdb-validate: Validate the integrity of downloaded SRA data

£ NCBI  Resources @ How To &




The Future

e Graph based reference genomes and
aligners are beginning to make an
appearance and will eventually replace
linear genome representations.

e Longread sequencing technologies are
becoming more robust (Oxford Nanopore
Technologies, Pacific Bioscience, Illumina
and others)

e De novo assembly of genomes (usually
using De Bruijn graph methods for species
without reference genomes) is an
alternative to mapping.




