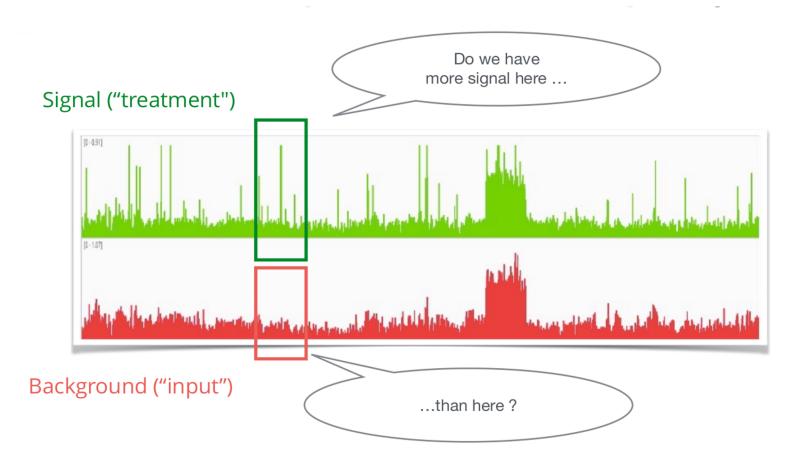
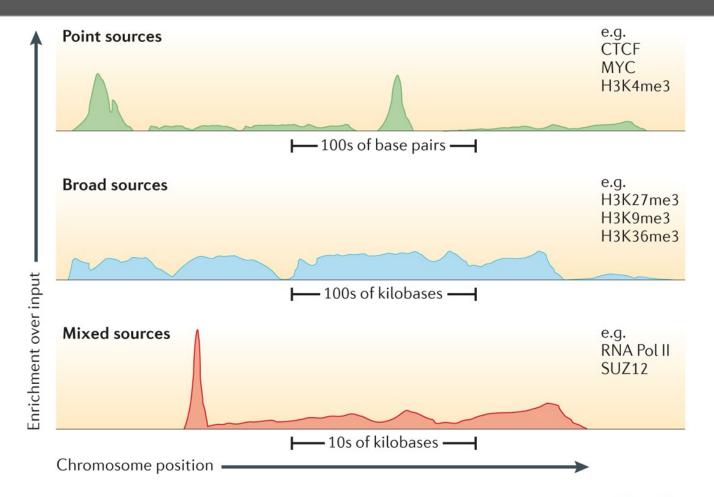


Peak-calling for ChIP-seq

Izzy Newsham MRC Cancer Unit University of Cambridge


CRUK Bioinformatics Summer School 2021 27th July 2021

Slides adapted from Shamith Samarajiwa


Overview

- Peak types
- ENCODE Project
- Software packages
- Important concepts for peak calling
 - Duplicates
 - Identifying the peak locations
- MACS2
 - Steps of MACS2 peak calling

Peaks: Signal to Noise

Peak Shapes

Sims et al., 2014 Nat Rev Genet.

Nature Reviews | Genetics

Narrow, Broad and Mixed Peaks

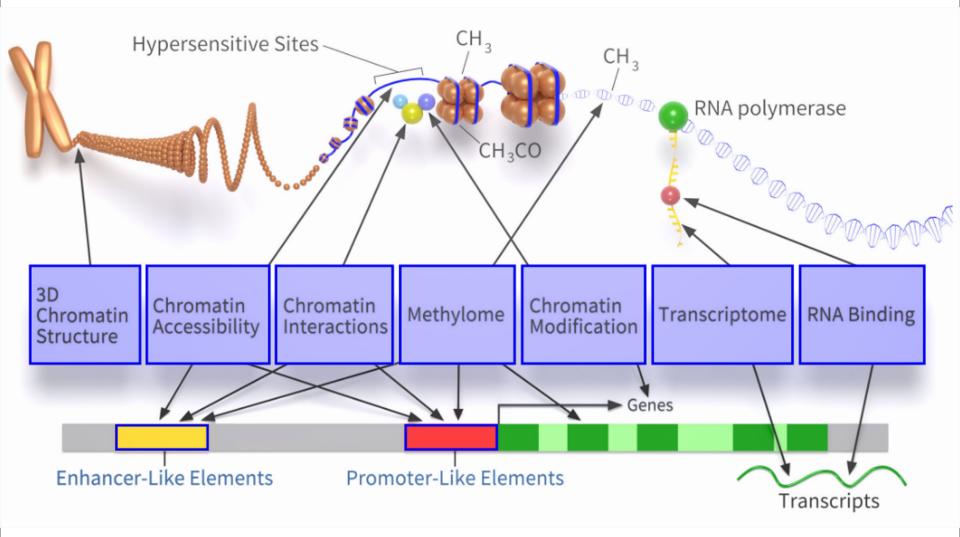
- Different data types have different peak shapes
- Use appropriate peak callers or domain detectors
- Same TF may have different peak shapes reflecting differences in biological conditions
- Replicates should have similar binding patterns

Narrow, Broad and Mixed Peaks

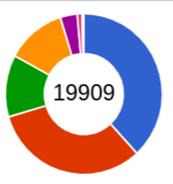
Narrow:

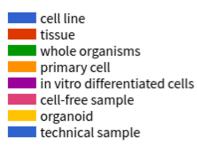
- Most TF peaks are narrow
- Particularly sharp peaks from ChIP-exo data
- Some histone marks, such as H3K4me3

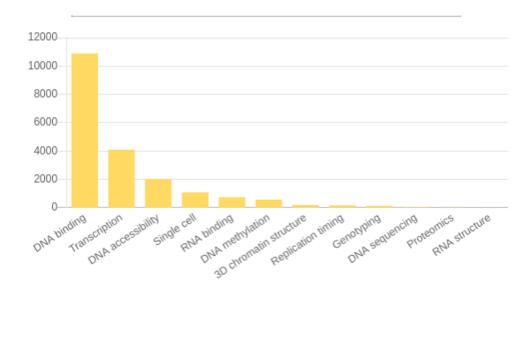
Broad:


- Histone marks such as H3K9me3 or H3K27me3
- DNA binding proteins such as HP1 , Lamins (Lamin A or B), HMGA

Mixed:


• RNA polymerase II peaks - depending on whether its detecting transcription initiation at the TSS or propagation along the gene body


ChIP-seq peaks from epigenomic data can be narrow or broad


ENCODE: Encyclopedia of DNA Elements

Biosample Type

Assay Categories

Encode Quality Metrics

							Self									
					N_uniq	MACS		Rep Cons					Under			Auto
Assay	Cell	Target	Treatment	Identifier	map reads	FDR 0.01	0.02	IDR 0.01	SPOT	PBC	NSC	RSC	seq	Diff rep	low S/N	low S/N
TF-ChIP-seq	A549	CTCF	DEX_100nM	wgEncodeHaibTfbsA549CtcfPcr1xDexaAInRep1	24,281,189	38,537	45,841	30,324	0.2361	0.71	2.79	2.19	0	C	0 0	0
TF-ChIP-seq	A549	CTCF	DEX_100nM	wgEncodeHaibTfbsA549CtcfPcr1xDexaAInRep2	15,453,361	96,884	39,091	30,324	0.1249	0.41	1.84	2.31	0	1	0	0
TF-ChIP-seq	A549	GR	DEX_100nM	wgEncodeHaibTfbsA549GrPcr2xDexaAlnRep1	16,608,102	9,921	12,613	8,283	0.0754	0.91	1.38	1.21	0	1	0	0
TF-ChIP-seq	A549	GR	DEX_100nM	wgEncodeHaibTfbsA549GrPcr2xDexaAInRep2	28,467,922	8,683	12,880	8,283	0.0723	0.44	1.42	1	0	C	0 0	0
TF-ChIP-seq	A549	POL2	DEX_100nM	wgEncodeHaibTfbsA549Pol2Pcr2xDexaAlnRep1	19,005,470	12,689	24,395	21,463	0.6166	0.86	2.99	1.32	0	C	0 0	0
TF-ChIP-seq	A549	POL2	DEX_100nM	wgEncodeHaibTfbsA549Pol2Pcr2xDexaAInRep2	23,115,884	14,816	28,503	21,463	0.5388	0.86	2.81	1.12	0	C	0 0	0
TF-ChIP-seq	A549	USF1	DEX_100nM	wgEncodeHaibTfbsA549Usf1Pcr1xDexaAInRep1	22,289,881	2,631	16,330	8,917	0.0791	0.87	1.28	1.86	0	C	0 0	0
TF-ChIP-seq	A549	USF1	DEX_100nM	wgEncodeHaibTfbsA549Usf1Pcr1xDexaAInRep2	12,364,820	3,028	7,659	8,917	0.0517	0.82	1.44	1.9	0	C	0 0	0
TF-ChIP-seq	A549	GR	DEX_500pM	wgEncodeHaibTfbsA549GrPcr1xDexdAlnRep1	19,646,503	25,233	1,312	1,226	0.0105	0.96	1.05	0.56	0	C) 1	. 1
TF-ChIP-seq	A549	GR	DEX_500pM	wgEncodeHaibTfbsA549GrPcr1xDexdAInRep2	15,095,316	123,828	1,218	1,226	0.0109	0.94	1.06	0.5	0	C) 1	. 1
TF-ChIP-seq	A549	GR	DEX_50nM	wgEncodeHaibTfbsA549GrPcr1xDexbAlnRep1	19,291,260	57,488	23,821	25,096	0.1289	0.96	1.55	1.42	0	C	0 0	0 0
TF-ChIP-seq	A549	GR	DEX_50nM	wgEncodeHaibTfbsA549GrPcr1xDexbAlnRep2	16,754,796	71,917	22,601	25,096	0.1426	0.95	1.64	1.61	0	C) 0	0
TF-ChIP-seq	A549	GR	DEX_5nM	wgEncodeHaibTfbsA549GrPcr1xDexcAInRep1	20,120,740	19,331	8,573	10,348	0.0343	0.98	1.10	0.89	0	1	1 1	. 0
TF-ChIP-seq	A549	GR	DEX_5nM	wgEncodeHaibTfbsA549GrPcr1xDexcAInRep2	20,559,786	31,539	13,796	10,348	0.0641	0.96	1.23	1.17	0	C) 0) 0
TF-ChIP-seq	A549	CTCF	EtOH_0.02p	wgEncodeHaibTfbsA549CtcfPcr1xEtoh02AInRep1	22,672,467	31,983	37,735	33,511	0.1601	0.75	1.78	2.67	0	C	0 0	0 0
TF-ChIP-seq	A549	CTCF	EtOH_0.02p	wgEncodeHaibTfbsA549CtcfPcr1xEtoh02AInRep2	14,351,615	236,390	49,814	33,511	0.2040	0.42	3.21	2.55	0	C	0 0	0
TF-ChIP-seq	A549	POL2	EtOH_0.02p	wgEncodeHaibTfbsA549Pol2Pcr2xEtoh02AInRep1	17,136,347	17,929	29,121	28,130	0.5602	0.9	2.89	1.19	0	C) 0	0
TF-ChIP-seq	A549	POL2	EtOH_0.02p	wgEncodeHaibTfbsA549Pol2Pcr2xEtoh02AInRep2	19,201,309	16,879	34,156	28,130	0.5687	0.82	3.09	1.12	0	C) 0) O
TF-ChIP-seq	A549	USF1	EtOH_0.02p	wgEncodeHaibTfbsA549Usf1Pcr1xEtoh02AInRep1	16,241,779	7,936	11,349	10,368	0.0648	0.95	1.38	2.02	0	C	0 0) 0
TF-ChIP-seq	A549	USF1	EtOH_0.02p	wgEncodeHaibTfbsA549Usf1Pcr1xEtoh02AInRep2	13,242,129	11,812	11,204	10,368	0.0793	0.85	1.72	1.99	0	C	0 0	0
TF-ChIP-seq	AG04449	CTCF	None	wgEncodeUwTfbsAg04449CtcfStdAInRep1	9,952,444	97,323	62,334	44,965	0.5513	0.85	11.97	2.11	0	C	0 0	0 0
TF-ChIP-seq	AG04449	CTCF	None	wgEncodeUwTfbsAg04449CtcfStdAInRep2	23,572,200	42,477	42,096	44,965	0.2187	0.94	2.68	1.61	0	C) 0) 0
TF-ChIP-seq	AG04450	CTCF	None	wgEncodeUwTfbsAg04450CtcfStdAInRep1	21,170,101	44,837	43,626		0.2450	0.9	2.62	1.73	0	C) 0	0
TF-ChIP-seq	AG09309	CTCF	None	wgEncodeUwTfbsAg09309CtcfStdAInRep1	14,311,099	37,977	35,062	35,451	0.3278	0.89	3.93	1.8	0	C) 0	0
TF-ChIP-seq	AG09309	CTCF	None	wgEncodeUwTfbsAg09309CtcfStdAInRep2	10,263,622	34,845	31,992	35,451	0.1768	0.95	2.31	1.52	0	C	0 0	0 0
TF-ChIP-seq	AG09319	CTCF	None	wgEncodeUwTfbsAg09319CtcfStdAInRep1	22,451,182	53,232	42,690	34,945	0.3807	0.8	4.32	1.67	0	C	0 0	0 0
TF-ChIP-seq	AG09319	CTCF	None	wgEncodeUwTfbsAg09319CtcfStdAInRep2	25,700,109	45,377	38,947	34,945	0.2775	0.87	2.97	1.73	0	C	0 0	0
TF-ChIP-seq	AG10803	CTCF	None	wgEncodeUwTfbsAg10803CtcfStdAInRep1	26,964,677	39,701	38,287	39,892	0.2254	0.88	2.36	1.63	0	C) 0	0 0

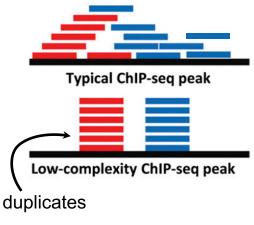
Peak Calling Software

MACS2 (MACS3 soon)	Most widely used peak caller. Can detect narrow and broad peaks.
Epic (SICER)	Specialised for broad peaks
BayesPeak	R/Bioconductor
Jmosaics	Detects enriched regions jointly from replicates
T-PIC	Shape based
EDD	Detects megabase domain enrichment
GEM	Peak calling and motif discovery for ChIP-seq and ChIP-exo
SPP	Fragment length computation and saturation analysis to determine if read depth is adequate.

Broad peak and Domain callers

• *MACS2* default setting calls narrow peaks For broad peaks: macs2 callpeak --broad

• **Epic:** Useful for finding medium or diffusely enriched domains in chip-seq data. Epic is an improvement over the original SICER, by being faster, more memory efficient, multi core, and significantly easier to install and use.

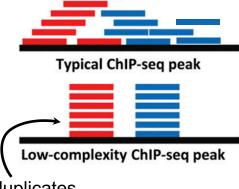

 Others: Enriched Domain Detector (EDD), RSEG, BroadPeak, PeakRanger (CCAT)

Important concepts

- Duplicates in ChIP-seq
- Identifying the peak locations

Duplicate Removal

 Duplicates are reads or pairs of reads that have identical or near-identical sequences (due to sequencing errors) and map to the same genomic position and strand


Modified from: Landt et al., ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.

Duplicate Removal

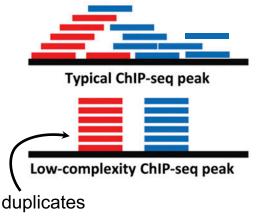
Duplicates are reads or pairs of reads that have **identical or near-identical sequences** (due to sequencing errors) and map to the same genomic position and strand

Two duplicate types:

- During library preparation, ChIP DNA undergoes a PCR amplification step
- Increased sequencing depth, low immunoprecipitation efficiency or insufficient amounts of starting material, can contribute to PCR duplicates formation
- These types of duplicates **need to be filtered out**
- However **natural duplicates** arise from sequencing of independent DNA fragments derived from the same genomic locations
- These **should not be removed** as they are part of the true signal

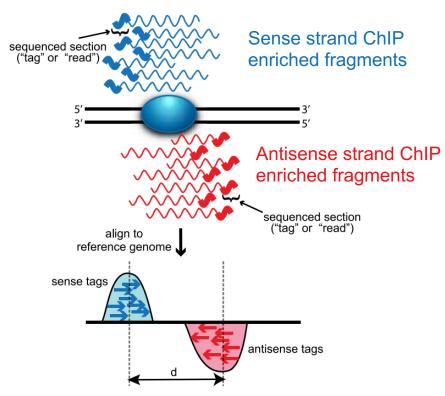
duplicates

Modified from: Landt et al., ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.

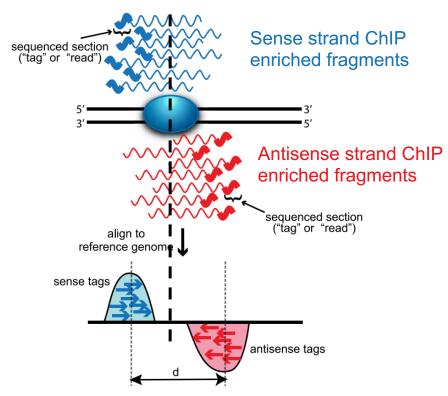

Duplicate Removal

- Examination of read alignment (BAM files) in a genome browser can help identify PCR duplicates
- Tian et al. suggest most duplicates in (narrow) peaks are natural duplicates, and removing duplicates results in loss of true signal

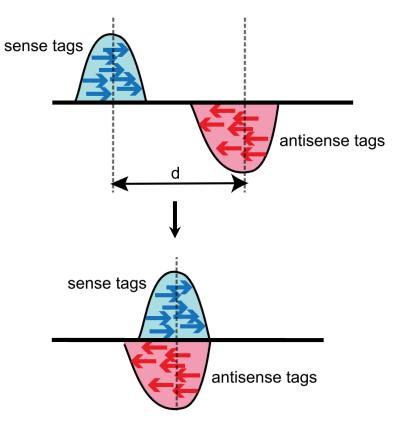
> PLoS One. 2019 Apr 3;14(4):e0214723. doi: 10.1371/journal.pone.0214723. eCollection 2019.


Identification of factors associated with duplicate rate in ChIP-seq data

Shulan Tian ¹, Shuxia Peng ¹, Michael Kalmbach ², Krutika S Gaonkar ¹, Aditya Bhagwate ¹, Wei Ding ³, Jeanette Eckel-Passow ¹, Huihuang Yan ¹, Susan L Slager ¹


Modified from: Landt et al., ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.

Reads display strand-dependent bimodality:

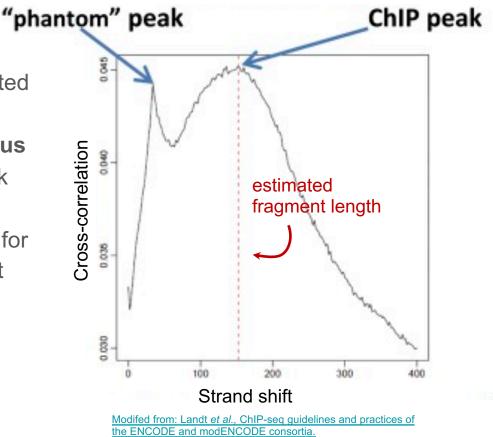

Modifed from: Wilbanks and Facciotti, Evaluation of Algorithm Performance in ChIP-Seq Peak Detection

Reads display strand-dependent bimodality:

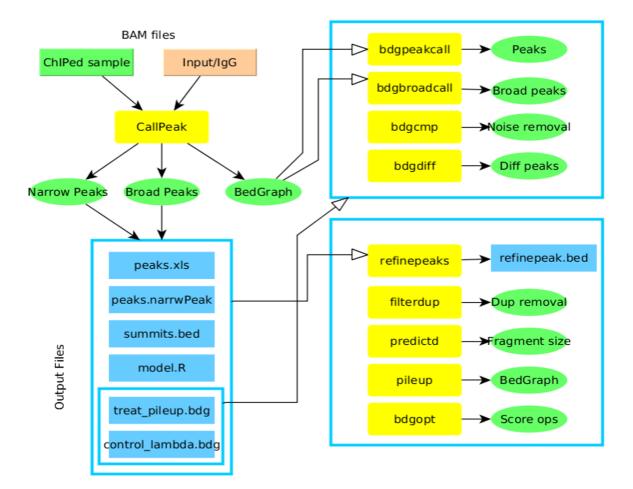
Modifed from: Wilbanks and Facciotti, Evaluation of Algorithm Performance in ChIP-Seq Peak Detection

- So we need to **shift the reads** so they all align at the true binding site
- In order to do this, we need to find the fragment length, d
- d can be detected experimentally or estimated from the strand asymmetry in the data
- The optimal size range of chromatin for ChIP-Seq analysis should be between 150 and 300 bp

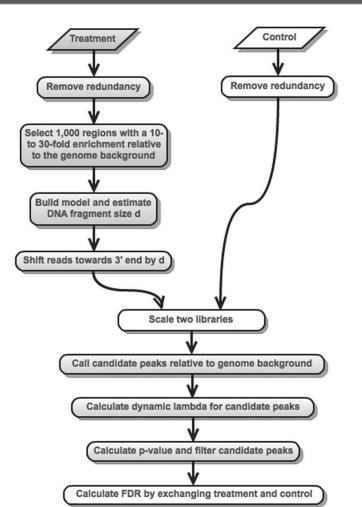
- So we need to **shift the reads** so they all align at the true binding site
- In order to do this, we need to find the fragment length, d
- d can be detected experimentally or estimated from the strand asymmetry in pred fragment the data
- The optimal size range of chromatin for ChIP-Seq analysis should be between 150 and 300 bp



artifact removal on ChIP quality metrics in ChIP-seq

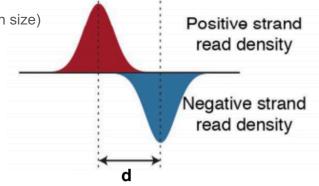

and ChIP-exo data

The cross-correlation plot


- The strand cross-correlation is computed as the Pearson's linear correlation between the minus strand and the plus strand, after shifting minus strand by k base pairs
- The result is a cross-correlation value for each shift value, that is plotted against each other to generate the crosscorrelation plot
- It is an important quality control plot

- **Most widely used** peak caller (not the best!)
- Identifies genome-wide locations of TF binding, histone modification or NFRs from ChIP-seq or ATAC-seq data
- Can be used without a control but a control sample results in more accurate peaks
- **Controls bias** due to GC content, mappability, DNA repeats or CNVs
- Can call **narrow or broad** peaks
- Many settings for optimizing results
- MACS3 (alpha version is currently available)

MACS1.4

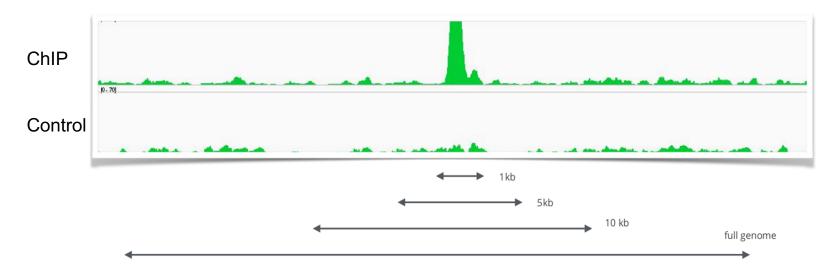


Peak calling with MACS2

Step 1: Estimate fragment length *d* and shift reads accordingly

(bandwidth = the sonication size)

- Slide a window of length 2*bandwidth across the genome
- For each window, calculate the foldenrichment and retain enriched windows with enrichment > MFOLD
- Sample 1000 of these windows
- Compute the read-densities for both strands. The distance between the peaks from each strand is d
- Shift all reads towards the 3' end by d/2

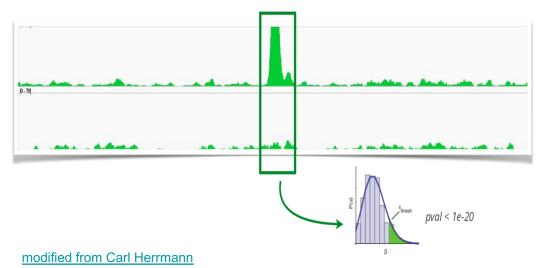


https://github.com/hbctraining/Intro-to-ChIPseq/blob/master/lessons/05_peak_calling __macs.md

Step 2: Identify local noise

- **Slide a window** of length 2*d across the genome
- For each window, model the read counts in the control sample as a Poisson distribution
 - Estimate the λ_{local} parameter of Poisson distribution:
 - $\lambda_{\text{local}} = \max(\lambda BG, \lambda 1k, \lambda 5k, \lambda 10k)$

Step 2: Identify local noise



estimate parameter λ_{local} over different ranges, take max.

modified from Carl Herrmann

Step 3: Identify enriched (peak) regions

- Calculate a **p-value** to determine if the read counts in the ChIP sample follow this control distribution (with mean λ_{local}) or not
- Determine regions with p-value < PVALUE

Step 3: Identify enriched (peak) regions

- Calculate a **p-value** to determine if the read counts in the ChIP sample follow this control distribution (with mean λ_{local}) or not
- Determine regions with p-value < PVALUE
- Merge overlapping enriched regions
- Determine summit position where the enriched region has the most fragments piled up
- Calculate the **fold-enrichment**
 - Ratio between the number of ChIP reads and λ_{local}

Step 4: Estimate FDR

As each called peak is independent, we need to perform multiple testing correction

 Calculate p-values for negative peaks, by peak calling after swapping treatment and control

$$FDR = \frac{\# \text{ negative peaks with pval } < p}{\# \text{ positive peaks with pval } < p}$$

$$FDR = 2/25 = 0.08$$

Step 4: Estimate FDR

 Calculate p-values for negative peaks, by peak calling after swapping treatment and control

$$FDR = \frac{\# \text{ negative peaks with pval < p}}{\# \text{ positive peaks with pval < p}}$$

FDR = 2/25 = 0.08

In MACS2, this has been replaced by the **Benjamini-Hochberg** correction method

Quality control

There are various **quality metrics** and plots to check your ChIP-seq and peak calling has worked

An important metric: Irreproducible Discovery Rate (IDR)

- We expect to have **high consistency between replicates** for the most significant called peaks.
- IDR measures consistency between replicates in high-throughput experiments
- software: <u>https://github.com/nboley/idr</u>

More on quality metrics in the next lecture

References

- Sims et al., Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014
- Landt *et al.*, ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012, 22:1813-1831. PMID: 22955991
- Tian et al. Identification of factors associated with duplicate rate in ChIP-seq data. PLOS One. 2019
- Wilbanks *et al.*, Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One. 2010, Jul 8;5(7):e11471. PMID: 20628599
- Carroll, Liang, Salama, Stark and Santiago. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front Genet. 2014
- Zhang et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biology. 2008
- https://github.com/hbctraining/Intro-to-ChIPseq/blob/master/lessons/05_peak_calling_macs.md
- <u>Carl_Herrmann_ChIP-seq_slides</u>