Introduction to ChIP-seq

Shamith Samarajiwa
MRC Cancer Unit
University of Cambridge

CRUK Bioinformatics Summer School 2021
27th July 2021
What is ChIP-seq?

- A combination of chromatin immunoprecipitation (ChIP) with ultra high-throughput massively parallel sequencing. The typical ChIP assay usually take 4–5 days, and require approx. 10^6~10^7 cells.

- Allows mapping of Protein–DNA interactions or chromatin modifications \textit{in vivo} on a \textit{genome scale}.

- Enables investigation of
 - Transcription Factor binding
 - DNA binding proteins (HP1, Lamins, HMGA etc)
 - RNA Pol–II occupancy
 - Histone modification marks

- Single cell ChIP-seq is also possible (Rotem et al, 2015 Nat. Biotech.)
The Chromatin Immunoprecipitation Method

DNA binding protein
ChIP-seq

Croslinking

Fragmentation

Co-IP

Cross link removal and DNA fragment purification

Library Preparation

Sequencing

Histone ChIP-seq
Important Considerations

- Good Experimental Design!
- Optimize Conditions (Cells, Antibodies, Sonication etc.)
- Sufficient amount of starting material (ChIP DNA depends on cell type, abundance of the mark or protein, quality of antibody etc)
- **Biological Replicates (at least 2 or more)**!!
 - sample biological variation & improve signal to noise ratio
 - capture the desired effect size
 - statistical power to test null hypothesis
- ChIP-seq controls – **Knockouts or Knockdowns, Input Control** (Try not to use IgG)
ChIP-Seq signal depends on:
- The number of active binding sites
- The number of starting genomes (number of cells)
- IP efficiency (antibody quality, biological model used)
- GC rich content (bias in fragment selection, during amplification)
- Open chromatin regions fragment more easily than closed regions (open region will generate more reads than closed one due to non-random fragmentation)
- Differential mappability of short reads to repeat-rich genomic regions (Teytelman et al., 2009, Aird et al., 2011)
- Hyper-ChIPable regions
ChIP-seq workflow

Technologies for nucleic acid–protein interaction detection

Older technologies:
● ChIP–chip: combines ChIP with microarray technology.
● ChIP–PET: ChIP with paired end tag sequencing

Newer:
● ChIP–exo: ChIP–seq with exonuclease digestion
● HiChIP: Chromatin interactions and histone modification
● CUT&Tag: Cleavage Under Targets and Tagmentation
● CLIP–seq / HITS–CLIP / iCLIP: cross-linking immunoprecipitation high throughput sequencing for RNA–Protein binding
● Sono–seq: Sonication of cross linked chromatin sequencing.
● Hi–C: High throughput long distance chromatin interactions
● DRIP–seq: R–loop (DNA–RNA) interaction detection
● ATAC–seq: Assay for Transposon Accessible Chromatin
Best Practices

These guidelines address:

- Antibody validation (IP specificity and quality)
- Experimental replication and controls
- Biological replicates
- Sequencing depth
- Data quality assessment
- Data and metadata reporting

Experimental guidelines:
- Marinov et al., “Large-scale quality analysis of published ChIP-seq data.” *G3* 2014
- Rozowsky et al., "PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls" *Nat Biotechnol.* 2009

Statistical aspects:
- Carroll TS et al., “Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data.” *Front Genet.* 2014
Rule of thumb: More prominent peaks are identified with fewer reads, compared to weaker peaks.

Jung et al, Nucleic Acids Res. 2014
Sequencing Depth

• Number of putative target regions continues to increase significantly as a function of sequencing depth

https://genohub.com/recommended-sequencing-coverage-by-application

○ Narrow Peaks: 10–20 million reads
○ Broad Peaks: 20–40 million reads
Why we use an Input Control

- Open chromatin regions are more easily fragmented than closed regions
- Uneven read distribution
- Repetitive sequences may appear to be enriched
- Compare ChIP-seq peak with same region in Input control
Decoy and Sponge databases

- **The decoy** contains human sequences missing from the hg19 reference, mitochondrial sequences and viral sequences integrated into the human genome. [blog article on decoys](#)

- **The sponge** contains ribosomal and mitochondrial sequences, non-centromeric Huref sequences absent in GRCh38 (hg38), centromeric models etc (Miga et al., 2015).

- These mop up ambiguous sequences, resulting in more accurate and faster alignment.
Black List Removal

- **Blacklisted regions** are genomic regions with anomalous, unstructured, high signal or read counts in NGS experiments, independent of cell type or experiment. Often found at repetitive regions (Centromeres, Telomeres, Satellite repeats).

- Once reads have been aligned to the reference genome, “blacklisted regions” are removed from **BAM** files before peak calling.

- Problems:
 - tend to have a very high ratio of multi-mapping reads
 - high variance of mappability
 - Difficult to remove with simple mappability filters.

- These regions also **confuse peak callers** and result in spurious signal.
Black Lists

- ENCODE DAC Exclusion List Regions download:
 https://www.encodeproject.org/annotations/ENCSR636HFF/

The ENCODE Blacklist: Identification of Problematic Regions of the Genome

Haley M. Amemiya, Anshul Kundaje & Alan P. Boyle

Scientific Reports 9, Article number: 9354 (2019) Cite this article
Grey Lists

- **Grey Lists** represent regions of high artefact signals that are specific to cell-lines or tumour samples, and can be tuned depending on the stringency required.

- **GreyListChIP** bioconductor package can identify those spurious regions, so that reads in those regions can be removed prior to peak calling, allowing for more accurate insert size estimation and reducing the number of false-positive peaks.

Peak Calling

- **Identifies TF binding sites or regions of histone modification.**
- **Count based** – Define regions. Count the number of reads falling into each region. When a region contains a statistically significant number of reads, call that region a peak.
- **Shape based** – Consider individual candidate binding sites. Model the spatial distribution of reads in surrounding regions, and call a peak when the read distribution conforms to the expected distribution near a binding site.