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Summary

Downstream analysis for extracting meaningful biology :

Normalization, Visualization and Interval Operations

Annotation of genomic features to peaks

Feature distribution of binding sites

Feature overlap analysis

Functional enrichment analysis: Ontologies, Gene Sets, Pathways
Motif identification and Motif Enrichment Analysis

Differential binding analysis

Integration with transcriptomic data to identify TF direct targets
Network Biology applications



bt Computational workflow for ChIP-seq and ATAC-seq
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Compare, Normalize & Visualize 1

e seqMiner enables qualitative comparisons between a reference set of
genomic positions and multiple ChIP-seq data-sets.

e Useful for comparing and visualizing replicates or conditions.
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Ye et al., 2011, Nucleic Acids Res.
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Compare, Normalize & Visualize 2

H3K27Me3-Input H3K4Mel-Input H3K4Me3-Input

e deepTools2 sequence depth or input
normalization, GC bias correction

e Plot signal profiles

e Customized heat-maps

e PCA, correlation and fingerprint plots
(chip enrichment)

Fingerprints of different samples

1.0

H3K27me3
H3K4mel
H3K4me3
H3K9me3
input

o
™

[T

o
o

0.4 -

fraction w.r.t. bin with highest coverage

0.0 0.2 0.4 0.6 0.8 1.0
rank

Ramirez et al., 2016, Nucleic Acids Res.



BEDtools for genomic interval operations

A FHFHHH AR

intersect the peaks from both experiments.

-f 0.50 combined with -r requires 50% reciprocal overlap between the
peaks from each experiment.

bedtools intersect -a expl.bed -b exp2.bed -f 0.50 -r > both.bed

find the closest, non-overlapping gene for each interval where

both experiments had a peak

-i0 ignores overlapping intervals and returns only the closest,
non-overlapping interval (in this case, genes)

bedtools closest -a both.bed -b genes.bed -io > both.nearest.genes.txt

e bedtools are a swiss-army knife of tools for a wide-range of genomics analysis tasks.

The most widely-used tools enable genome arithmetic: that is, set theory on the genome.

bedtools allows one to

@)

@)

Intersect

Merge

Count

Complement

shuffle genomic intervals from multiple files in widely-used genomic file formats

such as BAM, BED, GFF/GTF, VCF. Quinlan et al., Bioinformatics 2010



Bedops genome analysis toolkit

Input: One or more BED or Starch files or streams

BEDOPS is an open-source
command-line toolkit that
performs highly efficient and
scalable Boolean and other set
operations, statistical
calculations, archiving,
conversion and other
management of genomic data

of arbitrary scale. S ,,_m
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signal bins) overlap criteria (opﬂonal)

Neph et al., Bioinformatics 2012



Peak Annotation 1

e ChIPpeakAnno (BioC) map peaks to nearest feature (TSS, gene,
exon, miRNA or custom features)

o extract peak sequences
o find peaks with bidirectional promoters
o obtain enriched gene ontology
o map different annotation and gene identifiers to peaks
e Use biomaRt package to get annotation from Ensembl.
e IRanges, GenomicFeatures, GO.db, BSgenomes, multtest (BioC)

e converts BED and GFF data formats to RangedData object before
calling peak annotate function.

Zhu et al., 2010, BMC Bioinformatics



Peak Annotation 2

PeakAnalyzer

e A setof high-performance utilities for the automated processing of
experimentally-derived peak regions and annotation of genomic
loci.

e Consists of PeakSplitter and PeakAnnotator.

e Get latest genome annotation files from Ensembl (gtf format) or
UCSC (BED format).

e Map to either nearest downstream gene, TSS or user defined
annotation.

e Determine overlap between peak sets.

e Split peaks to sub-peaks. May be useful for de novo motif analysis.

Salmon-Divon et al., 2010, BMC Bioinformatics.
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Functional Enrichment Analysis 1
GREAT & rGREAT: Genomic Regions Enrichment of Annotations Tool

a Hypergeometric test over genes b Binomial test over genomic regions
Step 1: Infer proximal gene regulatory domains Step 1: Infer distal gene regulatory domains
T Gene transcription start site [T Gene transcription start site
7 Ontology annotation ©  Ontology annotation
(e.g., “actin cytoskeleton”) (e.g., “actin cytoskeleton™)
== Proximal regulatory domain — Distal regulatory domain
of gene with/without = of gene with/without =
T T T T T T
= ow <N paa e C rC = —Er9 = C | s
Step 2: Associate genomic regions with Step 2: Calculate annotated fraction of genome

genes via regulatory domains

v Genomic region associated . .
(W4 with nearby gene 0.6 of genome is annotated with =
X Ignored distal genomic region
T T T A 5
Step 3: Count genomic regions
'\r = r"j’ I xxXx [™ C associated with the annotation
A Genomic region
Step 3: Count genes selected by v YYy YY Y
proximal genomic regions
2 genes selected by proximal genomic regions 5 genomic regions hit annotation =
1 gene selected carries annotation =
Step 4: Perform hypergeometric test over genes Step 4: Perform binomial test over genomic regions
N = 8 genes in genome n = 6 total genomic regions
K_ = 3 genes in genome carry annotation = p.. = 0.6 fraction of genome annotated with =
n = 2 genes selected by proximal genomic regions k_ = 5 genomic regions hit annotation =

k.= 1 gene selected carries annotation =«

P= Pifyper (K=1 IN=8; K=3, n=72) P = Prpinom (k=51n=6, p=0.6)



Functional Enrichment Analysis 2

chipenrich
e Includes 3 different enrichment methods:
o Broadenrich - broadpeaks or histone modifications
o Chipenrich -TF narrow peaks 1000-10000’s
o Polyenrich -TF >100,000
e Includes annotation, and can use custom user provided annotation

1. Assign peaks to genes

Peaks .‘_‘ ‘ ‘.
Genome < ! _T ! . l Transcri ption

< ] ) z start site (TSS)
Locus definitions T it
: S B Transcri ption
Peaks assigned to: I end site (TES)
Nearest gene  (IIIIIIINICETIINNS vz SIS
: Midpoint between
<1kb from TSS _ m _ e two adjacent genes

= Midpoint between
Nearest TSS - two adjacent TSSs

M bility —> <1kb from TSS
appabili 1 _I
o

2. Determine presence of 3. Test for gene set enrichment 4. Summarize data and enrichment results
peaks in genes b3 a b
Locus Presence log (1 = 1r) = Po + Prg A
Gene length of peak +f(lo mL + 1 -
ACP1 11,541 ) f(togso( ) £,
ﬁggl 4;;3:2 g Logistic regression model -4 s
ITPR1 24 602 1 - Adjust for (mappable, m) locus "g’
MYT1L 500,221 1 length (L) g°
SAMD11 266,255 (o] - Estimate gene set (g) effect size (8,) &

Welch et al., 2014, Nuc. Acids Res.




Functional Enrichment Analysis 3

GAT tests if two sets of genomic intervals are associated more than expected
by chance.

e Takes into account GC bias and effective genome size
e Association typically means nucleotide overlap, but other measures such

as the distance between elements or the number of overlapping segments
can be used.

e gat-great implements a command line version of GREAT
https://gat.readthedocs.io/en/latest/

Chromosome

Segments of interest v o - -

(e.g. ChiP-seq)

1 = —
= PR e lee =)

Random Samples E—— S o =
= [o} ) & =
=g ===
Annotations

e.g. Introns

e.g. Promotors

Heger et al., Bioinformatics 2013


https://gat.readthedocs.io/en/latest/

Motif detection

Don’t scan a sequence with a motif and expect all sites identified to be biologically active.
Random matches will swamp the biologically relevant matches! This is a well known problem
in motif searching, amusingly called the ”Futility Theorem” of motif finding. Wasserman &
Sandelin, 2004, Nat Rev Genet.

1. PWM based sequence scanning or word search methods. These methods uses prior
information about TF binding sites and therefore can only be used to detect known
Transcription Factor Binding Sites (TFBS).

2. De novo motif identification — Pattern discovery methods:

Word based — Occurrence of each ‘word’ of nucleotides of a certain length is counted and
compared to a background distribution.

Probabilistic - seek the most overrepresented pattern using algorithmic approaches like
Gibbs sampling and Expectation maximization. These iteratively evolve an initial random
pattern until a more specific one is found.

Use de novo motif calling and alignment to build your own PWMs!

Biostrings & Motiv packages have PFM to PWM conversion methods.



BioConductor motif analysis packages

e rGADEM -motif discovery

o MotifRG -motif discovery

e MotIV -map motif to known TFBS, visualize logos
o motifStack -plot sequence logos

e MotifDb -motif database

e PWNMenrich -motif enrichment analysis

e TEBSTools — Rinterface to the JASPAR database
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Position Weight Matrices
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TFBS PWM/PFM sources

TRANSFAC public

TRANSFAC professional

JASPAR 2014

ORegAnno

hPDI

SwissRegulon

HOMER

UniPROBE

Dimers

FactorBook

SCPD, YetFasco

Elemento, Redfly

FlyFactorSurvey,Tiffin

Prodoric

Matys et al., 2006

Matys et al., 2006

Mathelier et al., 2014

Xie et al., 2010

Pachkov et al., 2010

Heinz et al., 2010

Newburger & Bulyk, 2009

Jonawski et al., 2013

Wang et al., 2012

Multiple species
Multiple species
Multiple species
Multiple species
Human
mammalian
Human

Multiple species
Human

Human

Yeast

Drosophila

Prokaryotic

v7.0 2005, Not been updated for a while!

v2017

(656)

Curated collection from different sources.

(437)

(190)

(1865)

(603) predicted dimers

(79) ENCODE ChiIP-seq motifs



Motif detection

HOMER v/ http://homer.salk.edu/homer/index.html 3
Large number of (Perl and C++) tools for ChIP-seq analysis.

Provides both de novo and PWM scanning based motif identification
and enrichment analysis.

User can specify custom background. (Randomly selected, GC or CGI
matched backgrounds.)

Uses a collection of ChIP-seq derived PWMs or user can specify PWM.

Can help with Peak annotation, GO enrichment analysis, Extract peak
sequences, Visualization.



Meme Suite

=
—»| DREME [—> == — e
MEME-ChiP - — Cm'é‘“
GLAM2 Motifs e
Unaligned sequences P2 ‘
- 2 )
MEME De-novo Motif Discovery FIMO
DREME Discriminative DNA Motif Discovery
MEME-ChIP  Mofif Analysis of Large DNA Datasets MAST
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Bailey TL. et al., "MEME SUITE: tools for motif discovery and searching." Nucleic Acids Res. 2009



Motif Enrichment Analysis

Identifies over and under-represented known motifs in a set of regions

The TFs whose DNA binding motifs are enriched in a set of regulatory
regions are candidate transcription regulators of that
gene/promoter/enhancer set.

Without ChIP-seq, identifying a co-regulated gene sets is difficult. Use
Ontologies, pathways, GSEA etc.

Picking the right background model will determine the success of the
motif enrichment analysis:

o All core-promoters from protein coding or non-coding genes etc.

o Higher order Markov model based backgrounds

o A sequence set similar in nucleotide composition, length and
number to the test set

o Open chromatin regions or a shuffled test sequence set.



MEME-ChIP

url: http://meme.nbcr.net

e Given a set of genomic regions, it performs

o ab initio motif discovery -novel TF binding sites (MEME, DREME)
motif enrichment analysis -known TF enrichment (Centrimo/AME)
motif visualization (MAST and AMA)
binding affinity analysis
motif identification -compare to known motifs (TOMTOM)
e Uses two algorithms for motif discovery:

o MEME -expectation maximization (EM) to discover probabilistic
models of DNA-binding by single TFs or TF complexes.

(@)
@)
@)
@)

o DREME -simpler, non-probabilistic model (regular expressions) to
describe the short binding motifs.

e Motif identification:
o FIMO -identify individual motifs

Machanick and Bailey, “MEME-ChIP: motif analysis of large DNA datasets.” 2011 Bioinformatics



Motif Enrichment Analysis
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Meta-Motif Analyzers

GimmeMotifs: a de novo motif prediction pipeline, especially suited for
ChIP-seq datasets. It incorporates several existing motif prediction
algorithms in an ensemble method to predict motifs and clusters these
motifs using the weighted information content (WIC) similarity scoring
metric. http://131.174.198.125/bioinfo/gimmemotifs/

BioProspector http://motif.stanford.edu/distributions/bioprospector/

GADEM http://www.niehs.nih.gov/research/resources/software/gadem/index.cfm

Improbizer http://users.soe.ucsc.edu/~kent/

MDmodule (included in the MotifRegressor Package) http://www.math.umass.edu/~conlon/mr.html
MEME http://meme.sdsc.edu/

MoAn http://moan.binf.ku.dk/

MotifSampler http://homes.esat.kuleuven.be/~sistawww/bioi/thijs/download.html

Trawler http://ani.embl.de/trawler/

Weeder http://159.149.160.51/modtools/



Real world applications of Motif Enrichment Analysis

e Breast cancer metastasis is a key T g g T
determinant of long-term patient =~ - A -
survival. = s e

e Bycomparing the transcriptomes of = - . i
primary and metastatic tumor cells  =—=_—— s —=
in a mouse model of spontaneous — = — =
bone metastasis, we identified thata === —
substantial number of genes . —~——
suppressed in bone metastases are w .. .
targets of the interferon regulatory - - :
factor IRF7. medicine

e Restoration of Irf7 activity in tumor
cells or administration of interferon Silencing of Irf7 pathways in breast cancer cells promotes
(WhICh induces IRF7) led to reduced bone metastasis through immune escape
bone metaStaseS and prOIOnged Bradley N Bidwell>?, Clare Y Slaney"*?, Nimali P Withana', Sam Forster®, Yuan Cao?, Sherene Loi®,

- 1 t - Daniel Andrews!-3, Thomas Mikeska!%, Niamh E Mangan?, Shamith A Samarajiwa®7, Nicole A de Weerd®,
S u r Vlva ].m e . Jodee Gould®, Pedram Argani®, Andreas Méller!~*, Mark ] Smyth', Robin L Anderson'*%, Paul ] Hertzog®
& Belinda S Parker'3



Differential binding analysis 1

- Diffbind is a Bioconductor package by Stark et al., for identifying sites that
are differentially bound between two sample groups.

It includes functions to support the processing of peak sets, overlapping
and merging peak sets, counting sequencing reads overlapping intervals in
peak sets, and identifying statistically significantly differentially bound
sites based on evidence of binding affinity (measured by differences in read

densities). -
1M

More on DiffBind @ the practical!




Differential binding analysis 2

e THOR is an HMM-based approach to detect and analyze differential peaks
in two sets of ChIP-seq data from distinct biological conditions with

replicates.

e THOR is part of the Regulatory Genomics Toolbox suite and operate on

BAM files.
e THOR Performs
o Genomic signal processing
Differential Binding analysis
Normalization
Peak calling
p-value calculation

O O O O

in an integrated framework.

4 exrR4 |

H3K27ac 1°7%] -

'THOR S =
MACSZ — cwm— 3 - -
DiffReps = wFL
csaw ' = CC
Diffbind . —

|

PePr — — - -



A - THOR

1 - preprocessing

- fragment size estimation
- GC-content normalization
- input-DNA normalization

- input-DNA subtraction

}

2 - signal normalization
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Regulomes: from target genes to

e Not all TF binding sites (cistrome) are 3
transcriptionally active. The collection of Syl
transcriptionally active targets of a TF is it’s s : | [ ID
hnf1p N
regulome. e [ il
. Gatab
e Regulomes can be used to “explain” the o e | > . w—‘
phenotype under consideration and . T
3 : Ngn3+ to p-cell ‘
understand aspects of biological systems. il b |
: . : — [ |
e Regulomes in combination with pathway and I— [j;/betaz e ] ]
network modelling approaches can then be L S
. -cell | !
used deconvolute the networks underlying " J_ |75 =lan
phenotypes. ww || T | =
e These networks provide information on g I i L%INZ" | I

connectivity, information flow, and
regulatory, signaling and other interactions
between cellular components.



Detection of TF Direct Target

(" promoter based regulation e TF binding with ChIP-seq A
TF |—> e Gene expression with RNA-seq/microarray
m ([ J 3D al’ChiteCture W|th Hi'C
Gene e Regulatory element activity with Histone
\_ ChiIP-seq J
4 Enhancer based regulation , , )
< /_\ TF /\ |_>
\_ Enhancer -

e Rcade (Bioconductor)
e COBRA
e Beta



Rcade: R-based analysis of ChIP-seq And

Differential Expression

Rcade is a Bioconductor package developed by Cairns et al., that utilizes
Bayesian methods to integrates ChIP-seq TF binding, with a transcriptomic
Differential Expression (DE) analysis.

The method is read-based and independent of peak-calling.

Rcade can infer the direct targets of a transcription factor (TF).

These targets should exhibit TF binding activity, and their expression levels
should change in response to a perturbation of the TF.

limma : : baySeq
P(DE) P(ChiP)

P(DE and ChiP)




Beta

e Three main functionalities:
o to predict whether a factor has activating or repressive function
o to infer the factor’s target genes
o toidentify the binding motif of the factor and its collaborators

Wang, 2013 Nat Protoc. 2013

Expression data

l Activation

m

Upregulate targets
and associated
peaks

UP motifs I
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Stage 1: activation and
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Stage 2: direct targets
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| Stage 3: motif analysisj

|Differential motifsl
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Binding data
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| DOWN motifs
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KEGG: p53 signalling pathway

P53 SIGNALING PATHWAY
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