Downstream Analysis of ChIP–seq Data

Shamith Samarajiwa
MRC Cancer Unit
University of Cambridge

CRUK Bioinformatics Summer School 2021
27th July 2021
Summary

Downstream analysis for extracting meaningful biology:

- Normalization, Visualization and Interval Operations
- Annotation of genomic features to peaks
- Feature distribution of binding sites
- Feature overlap analysis
- Functional enrichment analysis: Ontologies, Gene Sets, Pathways
- Motif identification and Motif Enrichment Analysis
- Differential binding analysis
- Integration with transcriptomic data to identify TF direct targets
- Network Biology applications
seqMiner enables qualitative comparisons between a reference set of genomic positions and multiple ChIP-seq data-sets.

Useful for comparing and visualizing replicates or conditions.

Ye et al., 2011, Nucleic Acids Res.
deepTools2 sequence depth or input normalization, GC bias correction

- Plot signal profiles
- Customized heat-maps
- PCA, correlation and fingerprint plots (chip enrichment)

Ramírez et al., 2016, Nucleic Acids Res.
BEDtools for genomic interval operations

```bash
# intersect the peaks from both experiments.
# -f 0.50 combined with -r requires 50% reciprocal overlap between the
# peaks from each experiment.
$ bedtools intersect -a expl.bed -b exp2.bed -f 0.50 -r > both.bed

# find the closest, non-overlapping gene for each interval where
# both experiments had a peak
# -io ignores overlapping intervals and returns only the closest,
# non-overlapping interval (in this case, genes)
$ bedtools closest -a both.bed -b genes.bed -io > both.nearest.genes.txt
```

- **bedtools** are a swiss-army knife of tools for a wide-range of genomics analysis tasks. The most widely-used tools enable *genome arithmetic*: that is, set theory on the genome.

bedtools allows one to

- *Intersect*
- *Merge*
- *Count*
- *Complement*
- *shuffle* genomic intervals from multiple files in widely-used genomic file formats such as BAM, BED, GFF/GTF, VCF.

 Quinlan et al., Bioinformatics 2010
BEDOPS is an open-source command-line toolkit that performs highly efficient and scalable Boolean and other set operations, statistical calculations, archiving, conversion and other management of genomic data of arbitrary scale.

Neph et al., Bioinformatics 2012
Peak Annotation 1

- **ChIPpeakAnno (BioC)** map peaks to nearest feature (TSS, gene, exon, miRNA or custom features)
 - extract peak sequences
 - find peaks with bidirectional promoters
 - obtain enriched gene ontology
 - map different annotation and gene identifiers to peaks
- Use **biomaRt** package to get annotation from Ensembl.
- **IRanges, GenomicFeatures, GO.db, BSgenomes, multtest (BioC)**
- converts BED and GFF data formats to **RangedData** object before calling **peak annotate** function.

Zhu et al., 2010, BMC Bioinformatics
PeakAnalyzer

- A set of high-performance utilities for the automated processing of experimentally-derived peak regions and annotation of genomic loci.
- Consists of PeakSplitter and PeakAnnotator.
- Get latest genome annotation files from Ensembl (gtf format) or UCSC (BED format).
- Map to either nearest downstream gene, TSS or user defined annotation.
- Determine overlap between peak sets.
- Split peaks to sub-peaks. May be useful for de novo motif analysis.

Salmon-Divon et al., 2010, BMC Bioinformatics.
Peaks distribution across features

ChIPseeker (BioC)

Yu et al., 2015, Bioinformatics
Functional Enrichment Analysis 1

GREAT & rGREAT: Genomic Regions Enrichment of Annotations Tool

Step 1: Infer proximal gene regulatory domains
- Gene transcription start site
- Ontology annotation (e.g., “actin cytoskeleton”)
- Proximal regulatory domain of gene with/without π

Step 2: Associate genomic regions with genes via regulatory domains
- Genomic region associated with nearby gene
- Ignored distal genomic region

Step 3: Count genes selected by proximal genomic regions
- 2 genes selected by proximal genomic regions
- 1 gene selected carries annotation π

Step 4: Perform hypergeometric test over genes
- $N = 8$ genes in genome
- $k_π = 3$ genes in genome carry annotation π
- $n = 2$ genes selected by proximal genomic regions
- $k_n = 1$ gene selected carries annotation π
- $P = Pr_{hyper}(k \geq 1 \mid N = 8, K = 3, n = 2)$

Step 1: Infer distal gene regulatory domains
- Gene transcription start site
- Ontology annotation (e.g., “actin cytoskeleton”)
- Distal regulatory domain of gene with/without π

Step 2: Calculate annotated fraction of genome
- 0.6 of genome is annotated with π

Step 3: Count genomic regions associated with the annotation
- 5 genomic regions hit annotation π

Step 4: Perform binomial test over genomic regions
- $n = 6$ total genomic regions
- $p_π = 0.6$ fraction of genome annotated with π
- $k_π = 5$ genomic regions hit annotation π
- $P = Pr_{binom}(k \geq 5 \mid n = 6, p = 0.6)$
Functional Enrichment Analysis 2

chipenrich
- Includes 3 different enrichment methods:
 - Broadenrich - broadpeaks or histone modifications
 - Chipenrich - TF narrow peaks 1000–10000’s
 - Polyenrich - TF >100,000
- Includes annotation, and can use custom user provided annotation

Welch et al., 2014, Nuc. Acids Res.
GAT tests if two sets of genomic intervals are associated more than expected by chance.

- Takes into account GC bias and effective genome size
- Association typically means nucleotide overlap, but other measures such as the distance between elements or the number of overlapping segments can be used.
- `gat-great` implements a command line version of GREAT

Heger et al., Bioinformatics 2013
Motif detection

- Don’t scan a sequence with a motif and expect all sites identified to be biologically active. Random matches will swamp the biologically relevant matches! This is a well known problem in motif searching, amusingly called the "Futility Theorem" of motif finding. Wasserman & Sandelin, 2004, Nat Rev Genet.

- 1. **PWM** based sequence scanning or word search methods. These methods uses prior information about TF binding sites and therefore can only be used to detect known Transcription Factor Binding Sites (TFBS).

- 2. *De novo* motif identification – Pattern discovery methods:
 - **Word based** – Occurrence of each ‘word’ of nucleotides of a certain length is counted and compared to a background distribution.
 - **Probabilistic** – seek the most overrepresented pattern using algorithmic approaches like Gibbs sampling and Expectation maximization. These iteratively evolve an initial random pattern until a more specific one is found.
 - Use *de novo* motif calling and alignment to build your own PWMs!
 - **Biostrings & Motiv** packages have PFM to PWM conversion methods.
BioConductor motif analysis packages

- rGADEM - motif discovery
- MotifRG - motif discovery
- MotIV - map motif to known TFBS, visualize logos
- motifStack - plot sequence logos
- MotifDb - motif database
- PWMenrich - motif enrichment analysis
- TFBSTools – R interface to the JASPAR database
Position Weight Matrices

PWM conversion:

\[W_{b,i} = \log_2 \frac{p(b,i)}{p(b)} \]
<table>
<thead>
<tr>
<th>TFBS PWM/PFM sources</th>
<th>Publication</th>
<th>Species</th>
<th>Version/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSFAC public</td>
<td>Matys et al., 2006</td>
<td>Multiple species</td>
<td>v7.0 2005, Not been updated for a while!</td>
</tr>
<tr>
<td>TRANSFAC professional</td>
<td>Matys et al., 2006</td>
<td>Multiple species</td>
<td>v2017</td>
</tr>
<tr>
<td>JASPAR 2014</td>
<td>Mathelier et al., 2014</td>
<td>Multiple species</td>
<td>(656)</td>
</tr>
<tr>
<td>ORegAnno</td>
<td></td>
<td></td>
<td>Curated collection from different sources.</td>
</tr>
<tr>
<td>hPDI</td>
<td>Xie et al., 2010</td>
<td>Human</td>
<td>(437)</td>
</tr>
<tr>
<td>SwissRegulon</td>
<td>Pachkov et al., 2010</td>
<td>mammalian</td>
<td>(190)</td>
</tr>
<tr>
<td>HOMER</td>
<td>Heinz et al., 2010</td>
<td>Human</td>
<td>(1865)</td>
</tr>
<tr>
<td>UniPROBE</td>
<td>Newburger & Bulyk, 2009</td>
<td>Multiple species</td>
<td></td>
</tr>
<tr>
<td>Dimers</td>
<td>Jonawski et al., 2013</td>
<td>Human</td>
<td>(603) predicted dimers</td>
</tr>
<tr>
<td>FactorBook</td>
<td>Wang et al., 2012</td>
<td>Human</td>
<td>(79) ENCODE ChIP-seq motifs</td>
</tr>
<tr>
<td>SCPD, YetFasco</td>
<td></td>
<td>Yeast</td>
<td></td>
</tr>
<tr>
<td>Elemento, Redfly</td>
<td></td>
<td>Drosophila</td>
<td></td>
</tr>
<tr>
<td>FlyFactorSurvey, Tiffin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodoric</td>
<td></td>
<td>Prokaryotic</td>
<td></td>
</tr>
</tbody>
</table>
Motif detection

- **HOMER v4** http://homer.salk.edu/homer/index.html
- Large number of (Perl and C++) tools for ChIP-seq analysis.
- Provides both *de novo* and PWM scanning based motif identification and enrichment analysis.
- User can specify custom background. (Randomly selected, GC or CGI matched backgrounds.)
- Uses a collection of ChIP-seq derived PWMs or user can specify PWM.
- Can help with Peak annotation, GO enrichment analysis, Extract peak sequences, Visualization.
Meme Suite

Motif Enrichment Analysis

- Identifies over and under-represented known motifs in a set of regions.
- The TFs whose DNA binding motifs are enriched in a set of regulatory regions are candidate transcription regulators of that gene/promoter/enhancer set.
- Without ChIP-seq, identifying a co-regulated gene sets is difficult. Use Ontologies, pathways, GSEA etc.
- Picking the right background model will determine the success of the motif enrichment analysis:
 - All core-promoters from protein coding or non-coding genes etc.
 - Higher order Markov model based backgrounds
 - A sequence set similar in nucleotide composition, length and number to the test set
 - Open chromatin regions or a shuffled test sequence set.
MEME–ChIP

url: http://meme.nbcr.net

- Given a set of genomic regions, it performs
 - ab initio motif discovery – novel TF binding sites (**MEME**, **DREME**)
 - motif enrichment analysis – known TF enrichment (**Centrimo/AME**)
 - motif visualization (**MAST** and **AMA**)
 - binding affinity analysis
 - motif identification – compare to known motifs (**TOMTOM**)

- Uses two algorithms for motif discovery:
 - **MEME** – expectation maximization (EM) to discover probabilistic models of DNA–binding by single TFs or TF complexes.
 - **DREME** – simpler, non-probabilistic model (regular expressions) to describe the short binding motifs.

- Motif identification:
 - **FIMO** – identify individual motifs

Machanick and Bailey, “MEME–ChIP: motif analysis of large DNA datasets.” 2011 Bioinformatics
Motif Enrichment Analysis

Pscan-Chip

- Motif enrichment analysis using PWM databases and user defined background models.
- Optimized for ChIP-seq.
- Ranked lists of enriched motifs.
- Produces sequence logo’s and motif enrichment distribution plots.

Zambelli et al., 2013 Nucleic Acids Res.
GimmeMotifs: a *de novo* motif prediction pipeline, especially suited for ChIP-seq datasets. It incorporates several existing motif prediction algorithms in an ensemble method to predict motifs and clusters these motifs using the weighted information content (WIC) similarity scoring metric. http://131.174.198.125/bioinfo/gimmemotifs/

Improbizer http://users.soe.ucsc.edu/~kent/

MDmodule (included in the MotifRegressor Package) http://www.math.umass.edu/~conlon/mr.html

MEME http://meme.sdsc.edu/

MoAn http://moan.binf.ku.dk/

Trawler http://ani.embl.de/trawler/

Weeder http://159.149.160.51/modtools/
Real world applications of Motif Enrichment Analysis

- Breast cancer metastasis is a key determinant of long-term patient survival.

- By comparing the transcriptomes of primary and metastatic tumor cells in a mouse model of spontaneous bone metastasis, we identified that a substantial number of genes suppressed in bone metastases are targets of the interferon regulatory factor IRF7.

- Restoration of \textit{Irf7} activity in tumor cells or administration of interferon (which induces IRF7) led to reduced bone metastases and prolonged survival time.
• **Diffbind** is a Bioconductor package by Stark et al., for identifying sites that are differentially bound between two sample groups.

• It includes functions to support the processing of peak sets, overlapping and merging peak sets, counting sequencing reads overlapping intervals in peak sets, and identifying statistically significantly differentially bound sites based on evidence of binding affinity (measured by differences in read densities).

• More on DiffBind @ the practical!
THOR is an HMM-based approach to detect and analyze differential peaks in two sets of ChIP-seq data from distinct biological conditions with replicates.

THOR is part of the Regulatory Genomics Toolbox suite and operate on BAM files.

THOR Performs
- Genomic signal processing
- Differential Binding analysis
- Normalization
- Peak calling
- p-value calculation

in an integrated framework.
A - THOR

1 - preprocessing
- fragment size estimation
- GC-content normalization
- input-DNA normalization
- input-DNA subtraction

2 - signal normalization

3 - HMM
- Cond. 1
- Cond. 2

4 - postprocessing
- P-value estimate
- strand lag filter

5 - DP estimate example

B - Competing Methods

<table>
<thead>
<tr>
<th>One-Stage DPC</th>
<th>Two-State DPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PePr</td>
<td>MACS2</td>
</tr>
<tr>
<td>DiffReps</td>
<td>DESeq-IDR</td>
</tr>
<tr>
<td>csaw</td>
<td>DESeq-JAMM</td>
</tr>
<tr>
<td></td>
<td>DiffBind</td>
</tr>
</tbody>
</table>

C - Evaluation

1 - biological data
- 4 studies and 13 DPC problems
- evaluation with expression/histones (DCA)

2 - simulated data
- 12 scenarios: no. of replicates, within condition variance, ...

DCA score vs. No. DPs

true DPs
Regulomes: from target genes to networks

- Not all TF binding sites (cistrome) are transcriptionally active. The collection of transcriptionally active targets of a TF is it’s regulome.
- Regulomes can be used to “explain” the phenotype under consideration and understand aspects of biological systems.
- Regulomes in combination with pathway and network modelling approaches can then be used deconvolute the networks underlying phenotypes.
- These networks provide information on connectivity, information flow, and regulatory, signaling and other interactions between cellular components.
Detection of TF Direct Target

Promoter based regulation
- TF binding with ChIP-seq
- Gene expression with RNA-seq/microarray
- 3D architecture with Hi-C
- Regulatory element activity with Histone ChIP-seq

Enhancer based regulation
- Rcade (Bioconductor)
- COBRA
- Beta
Rcade is a Bioconductor package developed by Cairns et al., that utilizes Bayesian methods to integrates ChIP-seq TF binding, with a transcriptomic Differential Expression (DE) analysis.

- The method is read-based and independent of peak-calling.
- Rcade can infer the direct targets of a transcription factor (TF).
- These targets should exhibit TF binding activity, and their expression levels should change in response to a perturbation of the TF.
• Three main functionalities:
 ○ to predict whether a factor has activating or repressive function
 ○ to *infer* the factor’s target genes
 ○ to identify the binding motif of the factor and its collaborators

Wang, 2013 Nat Protoc. 2013
Functional Association Networks

Semi Supervised Network Generation and Topology analysis

Kirschner & Samarajiwa et al., PloS Genetics 2015
Thank You!