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® BULK VS SINGLE CELL RNA-SEQ
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® BULKVSSINGLE CELL RNA-SEQ

1. mMRBNA: TruSeqg RNA-Seq (Gold Standard)
* ~20,000 transcripts

More when consider splice variants / isoforms

* Observe 80-95% of transcripts depending on
sequencing depth

2. Low input methods ~3000 cells / well
* 4000-6000 transcripts per sample

Limiting to transcripts observed across all samples

* Observe 20-60% of the transcriptome

3. Single Cell Methods
« 200 -10,000 transcripts per cell

* Observe 10-50% of the transcriptome

« Many transcripts will show up with zero
counts in every cell. (even GAPDH)

* |f you only looked at transcripts observed in
all cells numbers drop dramatically.

Source: Sarah Boswell, Harvard Medical School, September 2020




® BULK VS SINGLE CELL RNA-SEQ

Deep RNA-seq | Sort-seq | Low input | scRNA-seq

Transcriptome
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Sequencing
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Source: Sarah Boswell, Harvard Medical School, September 2020
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Disadvantages of scRNA-seq

- Dropouts and noisy data

- Lowly expressed genes
might be undetected

- Samples will contain
doublets

- Replicates without batch
effect are unlikely

- Expensive



APPLICATIONS

] naturemedicine

Letter | Published: 08 June 2020

A single-cell atlas of the peripheral
immune response in patients with severe
COVID-19

Aaron J. Wilk, Arjun Rustagi, Nancy Q. Zhao, Jonasel Roque, Giovanny J. Martinez-

Colédn, Julia L. McKechnie, Geoffrey T. lvison, Thanmayi Ranganath, Rosemary Vergara,

LETTER

hittps/fdoiorg 10,1028/ =41586-018- 03945

A single-cell atlas of the airway epithelium reveals
the CFTR-rich pulmonary ionocyte

Lindsey W. Plasschaert-37, Rapolas? ilionis™*, Rayman Choo- Wing®-%, Virginia Savova®s, Judith Knehr*, Guglielmo Roma®,
Allon M. Klein®™ & Aron B. Jaffel-5+

J nature

Article | Published: 20 February 2019

A single-cell molecular map of mouse
gastrulation and early organogenesis

Blanca Pijuan-Sala, Jonathan A. Griffiths, Carolina Guibentif, Tom W. Hiscock, Wajid

Jawaid, Fernando J. Calero-Nieto, Carla Mulas, Ximena |barra-Soria, Richard C. V.
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TECHNOLOGIES

® Figure 1: Scaling of scRNA-seq experiments.
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®_ HISTORY AND PROGRESS

454

‘ Publications using 10x Genomics
366
time § 285
LETTER wenen 5/12 6/13 9/14 6/15 4/16 6/16 11/16 ;
Single-cell transcriptomics reveals bimodalityin 2013, 18 cells [} L B = -
peIion sad wpiicing s hmmmns ol 18 1500 50K 100K S00K 1.3m 2.7M g 198
T ST Ll e e —— # cells at Klarman Cell Observatory é
o 146

ARTICLE R £ o

Single-cell RNA -seq reveals dynamic 2014, 1700 cells g &8

paracrine control of cellular variation | 2

— L il — - —— . — — 12 16
o - —r S W S " —— Sy St S & 7
s Ty AR e i W ——— W — ———— — Sy ® - 2.

- 2016 2017 2018 2019

2015, 45,000 cells

ot Celta Using Nanciter Dropiets
ot e oy - PubMed search for ‘scRNA-seq’

RESULTS BY YEAR
Portiry- Sy Dinaonting Mok Crouts 2016, 200,000 cells

2017, 1.3 million cells (10X genomics)

Source: Introduction to scRNASeq, Timothy Tickle & Brian Haas, Broad Institute, 2017 ﬂ
n
o CANCER CAMBRIDGE O____-- O

: RESEARCH | INSTITUTE
Ahls UK

2009 2020



.3;:.‘{5

CANCER
RESEARCH

fow- UK

Good sample
preparation is
key to success!
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WORKFLOW

Single Cell RNA Sequencing Workflow
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® SAMPLE PREPARATION

- Understand well the nature of the sample (sampling conditions, preparation, purity)

- ldentify the source of technical difficulties in order to resolve them first

- Practice your sample preparation, optimise the protocol well, do not rush to the final experiment

- A well planned pilot experiment is essential for evaluating sample preparation and for understanding the
required number of cells.

- You need your cells to be highly viable (>90-95%), have no clumps and no debris. Cell membrane integrity
is a must!

- Free-floating RNA will make analysis more challenging

- Be cautious about FACS (especially with more fragile cells). If FACS necessary for enrichment, remember
that time is crucial factor

- Count with haemocytometer or cell counter (Countess Il Automated Cell Counter) —do not trust sorter
counts

- Fixation and cryopreservation are not compatible with many technigues —and generally should be avoided
if possible (Nuc-seq might be a solution for frozen samples)
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® METHODS

. 1) Cellsin wells, traps and valves (nanowell, Flow sorting, CellenOne,
Fluidigm C1, SmartSeq)
- Screen for and retrieve single cells of interest Passive wells Active pumps and valves
- Enrich for rare cells wit decided properties
- Control the cellular microenvironment
- Monitor and control cell-cell interactions
- Precise/extensive manipulation of single cells

2) Droplets (Drop-seq, 10x Genomics)
- Introduce distinct ‘packets’ of reagents to single cell (e.g. barcodes)
- Perform amplification on individual cells
- Sort large population of single cells

3) Combinatorial indexing (SCl-seq, SPLiT-seq) NS
. : W 000000000008 ooo%%gom_'%
- Economic use of reagents for cell separation D oo CLLLerY, 5
- Efficiency of handling larger population than Drop-seq 1 :2:2:;&:“““""““”“““'“"
il Secreting T cell
- Maintain complexities of population without bias from droplet or well Rehinpereae
eted analyte (IL-10)
SPLIT-Seq theMaiie | 1?\ Secondary Ab labeled with fluorescent

358% CANCER | CAMBRIDGE
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®. COMPARISON OF METHODS
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®. COMPARISON OF METHODS
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® PERFORMANCE
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PERFORMANCE
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® MORE CELLS OR MORE GENES?

SMART-seq2 a
@ Fresh @ Cryo (-80°C) @ Cryo (N,)
0
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® ©
droplet-RNAseq o ©
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SMART-seq?2 Droplet-RNAseq o 0
- 100 cells - 10000 cells : '
- - ' ' - kr r cell o : : - \
Full-length libraries 5’0 ,egds per ce e
- 1Mreads per cell -3 /5 bias Read aligment distribution (transcript 5’ to 3’)
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Droplet-RNAseq

Q

Percentage of reads

Percentage of reads

SMART-seq?2

@ Fresh @ Cryo (-80°C)

1.0

O 20 40 60 80 100
Read aligment distribution (transcript 5' to 3')

- Required number of cells increases with complexity of the sample.
- Number of reads will depend on biology of sample
- Cell-type classification of a mixed population usually requires lower read depth
- You can always re-sequence your samples.



® SMART-SEQ2/3/4 OVERVIEW

,#ﬁw 5 polyA 3' KEY -
. ° SMART-Saq v4 -y ::,gﬁa:hm?;g;
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Samples pooled
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e———l aE T N
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. . . =_- Tr!RPI and
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® SMART-SEQ2/3/4 + MOSQUITO LV

. . FACS sorting on 96/384-well plates
RBCyee (000000000
ysis
i 000000000
- HHHH
Staining. 000000000
s 000000000 |
™
|
* * ‘ FACS Fluidigm Cl-autoprep system
fessssss (LY 1943
. - . ; o £ £114E
Single cell RNA-Seq . . . .
o - Mosquito LV makes assay miniaturisation

- ; simple, leading to significant savings on
Dissecton 'ggfglt%" , F?\Z%Svgomg ARV precious reagents and time.
M .Zn o ; ' - Mosquito LV offers highly accurate and precise
W ® 22 .‘.::: u multichannel pipetting from 25 nLto 1.2 L.
used» CANCER | CAMBRIDGE > i
o RESEARCH | INSTUTE @ 204 odn 2 SmartSeq2 cost reduced from $12 to $4 per
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Cell suspension is aspirated into a
glass capillary

Generation of drops on demand, in
air

Thanks to automated imagining,
cellenONE tracks cells and
determines if upcoming drops will
contain or not a single cell

Drops containing single cells are
dispensed into selected targets,
drops without cells or with more
than one cells are dispensed into
recycling tube
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®_ DROP-SEQ OVERVIEW

- Moved throughput from hundreds to Ce“
thousands.

- Droplet-based processing using microfluidics

- Nanoliter scale aqueous drops in oil.

Highly Parallel Genome-wide Expression Profiling of
Individual Cells Using Nanoliter Droplets

~ 1 Graphical Abstract Authors
3 E 4 d Evan Z. Macosko, Anindita Basu, ...,
- Bead based (STAM PS) . Drop-seq single cell analysis Aviv Regev, Steven A. McCarroll
m | Cro p art | C | es emacosko@genetics.med.harvard.edu
: e @ (E.Z.M.),
. . Distinctl .
- Cell barcodes use split-pool synthesis. FeEE mocarroll@genetics.med.harvard.edu
. . beads % (S.A.M.)
- Uses UMI (Unique Molecular Identifier)
L * * B % @ In Brief
- Chance to have two cells within one droplet @ Conturng s _
@ apturing single cells along with sets of
: uniquely barcoded primer beads together
g} in tiny droplets enables large-scale,
= highly parallel single-cell transcriptomics.

Applying this analysis to cells in mouse
retinal tissue revealed transcriptionally

J/.'F ) ’/."_%\\\ b :l i_é ,*» distinct cell populations along with
\\ /| —_— K‘/l —> ; E ; ; molecular markers of each type.
-. .. -
L] * ‘ -
e CANCER CAMBRIDGE 1000s of DNA-barcoded single-cell transcriptomes
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“ UMI = UNIQUE MOLECULAR IDENTIFIERS

After PCR enrichment, without UMIs, one can not distinguish if multiple copies of a
fragment are caused by PCR clones or if they are real biological duplicated.

By using UMIs, PCR clones can be found by searching for non-unique fragment-UM|
combinations, which can only be explained by PCR clones.

When performing variant analyses, these falsely overrepresented fragments can result in
incorrect calls and thus wrong diagnostic findings

Molecule Type UMIs __ |Reads
i) s =) =_ = — ® 6
2 2 UMIs detected
H =. _{ 0 1 UMI missed
I 9 7
Sample Library @ 5 3 UMIs detected
Label with UMIs Ampln‘y Sequence & Count ® 1 1 phantom UMI

L CANCER | CAMBRIDGE
33 RESEARCH | INSTITUTE
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®. 10X GENOMICS
OVERVIEW

- Droplet-based similar to Drop-Seq, 3’ or 5 mRNA

v3 Gel Bead

- In contrast to Drop-seq, where solid beads are used for RNA
capture, 10X uses soft hydrogels containing oligos. These enable
“single Poisson loading” leading to capture of >60% of input cells.

- Standardized instrumentation and reagents (unhackable so no
customisation or control)

- Very easy to use and less processing time

- More high-throughput scaling - 8 samples can be processed
simultaneously with up to 10000 cells captured per sample

- The doublet rate increases with number of cells loaded

- CellRanger and CellLoupe software are available and user friendly

% CANCER CAMBRIDGE
RESEARCH | INSTITUTE
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® 10X GENOMIC

OVERVIEW
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cONA from poly-adenylated mRNA

Source: 10x Geno
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® 10X GENOMICS OVERVIEW

Pooled cDNA amplification

TS0 Pooled amplified cDNA processed in bulk
T H
EEEEE $z— oS om—— : Read 1 UMI Poly(dT)VN TSO
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® 10X GENOMICS LIBRARIES

. Chromium Single Cell V(D)J Enriched Library
Chromium Single Cell 3' Gene Expression Library
Read 1:28 Sai:fle Sample
]'Jh‘j._i-UM{ Ind:x Vv J C Index
S B e B
: I P5 TruSeq 10x UMI TSO TruS
P5 TruSeq 10 UMI PolydTivN %] Truseg Beid 1 ma Loy
Chromium Single Cell 3' Cell Surface Protein Library Chromium Single Cell 5' Gene Expression Library
et Slalr?:le
IEEEETE——— e Sample
L e i
1 Capture eature ru e $ 20909090 0 S————— I
P Nt iN | Barcade U Sequencel Barcode  Read3 —— e — —
:Reldq 297 Read1 g ;:zua?;
o Source: 10x Genomics
R1 R2
e | 0 . .
— — Sequencing Read Description Number of cycles
e |
— Readl 10x Barcode Read (Cell) 28bp
— — + Randomer Read (UMI)
I I
CB UM poly(T) mRNA fragment i7 index Sample index read 8bp (soon 10bp)
w4l CANCER | CAMBRIDGE i5 index Sample index read 0 (soon 10bp)
by RESEARCH | INSTITUTE

&w UK Read?2 Insert Read (Transcript) 91bp (soon 90bp)



CITE-SEQ

‘ - Cellular Indexing of Transcriptomes and

Epitopes by Sequencing

- CITE-seq uses DNA-barcoded antibodies to

d
NK&
. -).i.!"- bt
convert detection of proteins into a quantitative, "'i 'V. .

sequenceable readout

Antibody binding, Single cell droplet encapsulation
washing cells oil

5 Cells
‘&_

[ ]
°
Beads Oil

2 b

mRNAs and antibody-oligos
hybridize to RT oligos and
are indexed with cell barcode
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Source: Stoeckius et al. Nat Methods. (2017)
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CITE-SEQ

TotalSeq™-A Poly(dT)-based Systems Celt

Barcode UM Poly(dT)

! ! ! TotalSeq™-A
el
N\
TEED AAAAAAAAAAAAAAAAA (+A, ) 3

Cell

Read 1 Barcode umi Poly(dT)

TotalSeq™-B 10x Genomics 3’ v3 ! ! | !

|

TotalSeq™-B

Ym CRISETINIETD NNNNNNNNNGC TTTAAGGCCGGTCCTAGC*AA i

5 NNNNNNNNNCCCATATAAGA*A*A 3’ Q‘E

TotalSeq™-C 10x Genomics 5 = -
Read 1 Barcode umt | Switch Oligo (150)
r—' — : , TotalSeq™-C
EE——————

-

Source: BiolLegend



o CELLHASHING

Reduces cost of running multiple samples by adding hashtag oligos and

pooling into single channel of 10x chip
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Library preparation,
& sequencing
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Analysis &
demultiplexing

AL

Allows overloading as by sequencing tags alongside the cellular
transcriptome, we can assign each cell to its sample of origin, and
robustly identify doublets originating from multiple samples
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Genotype-free demultiplexing of pooled single-cell
RNA-Seq

Jun Xu®, C;utlm Falconer”, Quan Nguyen®, Joanna Crawford®, Brett D.
McKinnon"© *, Sally Mottlockb Alice Peb'l\f”- hi Alex W. Hewitt™® ™ Anne
Senabouth?, Nathan Palpant®?, Han C hmh Stacey Andersen®’, Grant W.

Montgomery®®, Joseph Powell®¢, Lachlan Coin®"-*

‘| nature methods

Article | Published: 17 June 2019

MULTI-seq: sample multiplexing for
single-cell RNA sequencing using lipid-
tagged indices

Christopher S. McGinnis, David M. Patterson, Juliane Winkler, Daniel N. Conrad,
Marco Y. Hein, Vasudha Srivastava, Jennifer L. Hu, Lyndsay M. Murrow, Jonathan S.
Weissman, Zena Werb, Eric D. Chow & & Zev J. Gartner &

Nature Methods 16, 619-626(2019) | Cite this article
15k Accesses | 27 Citations |85 Altmetric | Metrics



® SINGLE CELL
ATAC-SEQ

Chromium Single Cell ATAC libraries comprise double stranded DNA fragments
which begin with P5 and end with P7. Sequencing these libraries produces a standard

Ilumina® BCL data output folder. 78
i5:16 bp lnal:hr:a-lflr:
A Read 1IN~ _
. T ..
[ . ] .
PS B .I - Read 1N et Read 2N Read 2N

Sequencing Description Number of
Read cycles
Readl Insert Sequence 1N 50bp
i7 index Sample index read 8bp
i5 index 10x Barcode Read (Cell) 16bp
Read?2 Insert Sequence 2N (opposite  50bp

end)

CANCER CAMBRIDGE
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®, ATAC-SEQ + RNA-SEQ

Profiling Different Modalities To Gain Deeper Insights  Dive Deep Where It Matters
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Human Pan-Cancer
1,253 genes &

Human Immunology

'P?-w- UK

TARGETED PANELS

‘ Accelerate research in 4 major areas

» 33 cancer types, key

biomarkers, pathways, and cellular

processes
* Profile tumor microenvironment
and heterogeneity, and tumor

immune status in a wide variety of

tumors

» Covers innate and adaptive
immunity, inflammation and
immuno-oncology

» Comprehensively profile the
immune response in cells and
tissues

1,056 genes
w54 CANCER | CAMBRIDGE
g RESEARCH | INSTITUTE

Human Gene Signature

1,142 genes

Human Neuroscience
1,186 genes

« Disease and drug targets,
including kinases, GPCRs, cell
cycle/checkpoint

« Analyze the activation or
inhibition of important signaling
pathways, and discover
mechanism of action of small
molecules

« Covers neural development,
neurogenesis,
neurodegenerative diseases
and neuro-oncology
 Characterize changes in gene
expression in brain injury and
disease

Reduced sequencing cost

WTA and targeted gene expression

from the same cells

Core assay compatibility

Content and customization

10x

GENOMICS

Sequencing reads (M)

200+

150+

1004

504

Sequencing reads required
for 8,000 cells

80% reduction

WTA Targeted (~1k genes)
20,000 4,000
reads/cell reads/cell

© 10X GENOMICS, INC 2020 | FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Source: 10x Genomics



® . SPATIAL TRANSCRIPTOMICS

Human spatial atlas
é O.

55ul spots -> 1 and 10 cells captured per spot
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Trends in Blotechnology
Figure 3. Applications for Spatially Resolved Transcriptomics. Three primary kinds of hot issues can be resolved by
spatially resolved transcriptomics: left, discovering spatial heterogeneity of diseases; middle, establishing spatial
transcriptome atlases for the human body; and right, delineating an embryonic developmental and spatial blueprint.

Source: Liao et al. Trends in Biotechnology (2020) Visium Spatial Capture Area with Visium Gene Expression
' ) ) Gene Expression Slide 5000 Barcoded Spots Barcoded Spots
Partial Read 1 Poly(dT)
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Source: 10x Genomics



® SPATIAL TRANSCRIPTOMICS
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IF + Visium IF + Visium
Gene Expression Whole Transcriptome

Immunofluorescence (IF) Visium Gene Expression

NeuN + Rbfox3

Microscope Imaging Readout Sequencing Readout Microscope Imaging + Sequencing Readout

Feature Barcode Correlates with Immunofluorescence
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I Feature Barcode Antibody-Barcode counts ’ Gene expression clustering
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« EXPERIMENTAL DESIGN

Confounded design Balanced design
T 9PY T vY
§ OO § 3 : ooy !
oog oog oog 000 o ). ° 3
< e s 090 238 @8/ 233 -+

Plates

| g -

Sequencer lanes Sequencer lanes

Source: Baran-Gale et al. Brief Func Genomics. 17 (4):233-239. (2018)
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I. Tissue Procurement

Source: Key considerations:
- Biological variation
- Sampling/handling variation - Technical replicates
- Duration of sourcing

- Primary human
- Model organism
- Cell culture

Il. Tissue Dissociation
__ @@ Method:

@ Key considerations:
0 “@@ @ - Mechanical mincing - Experimental consistency
< ®)_<> - Enzymatic digestion - Shortest duration

Study design:
- Biological replicates

- Cell number calculation
- Workflow optimization

Quality control:
- FACS analysis
- qPCR for marker genes

() @ - Automated blending - Highest cell/nucleus quality - Imaging of cell integrity
N0 - Microfluidics devices - Representation of all cell types - RNA quality (RIN)

lll. Cell Enrichment (optional)

Method:
® @

- Dead cell removal

IV. Single Cell RNAseq Platform
Method:
- Droplet-based
g0eqW - Tube-based after FACS
: - Microwell-based
- Microfluidics-enabled

V. Library Sequencing
SIS Method:
FaZensl - lllumina NGS
SIS - Compatible with cDNA library
<

VI. Computational Analysis
3 Key considerations:

D - Differential centrifugation, sedimentation, filtration
@@ ® . Antibody labeling for positive/negative selection
@ - Flow cytometry or bead-based enrichment

Key considerations:

- Additional handling

- Longer duration

- Loss of RNA quality

- Transcriptome changes

Key considerations:

- Cell throughput and handling time

- Gene coverage and cell type detection
- Whole transcript versus 3’end counting
- Imaging capability for doublet detection

Sequencing depth considerations:

- 3’end counting: low depth ~50K RPC

- Whole transcript: high depth ~1M RPC

- Alternative splicing: ~20-30M RPC

- Iterative optimization for biological system

Sample Batch correction approaches:

- Separation of batch and condition - Céll Hashing
- Technical vs. biological variation - Demuxlet

- Canonical correlation analysis (CCA)
- MAST

Source: Nguyen QH et al. Front Cell Dev Biol 6:108. (2018)




® WHAT PLATFORM SHOULD | USE?
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Choose protocol based on:

- Throughput (number of cells per reaction )

- Sample of origin

- Cost / Labour / Time limitations

- Gene body coverage: 5’/ 3’ biased or full-length?
- UMI vs no-UMI

- Sequencing depth per cell

Examples:

If you sample is fairly homogeneous — bulk RNAseq

If your sample is limited in cell number — plate-based method

If you want re-annotate the transcriptome and discover new isoforms — full-length
coverage (SMART-seq2)

If you are looking to classify all cell types in a diverse tissue - high throughput

If you have only archival human samples — nuclei isolation
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USEFUL RESOURCES: (

* Haque et al. A practical guide to single-cell RNA-sequencing for
biomedical research and clinical applications. Genome Med.
2017;9(1):75.

* Single cell course by Hemberg Lab, Wellcome Sanger Institute
(http://hemberg-lab.github.io/scRNA.seq.course/index.html)

* Tabula Muris (https://tabula-muris.ds.czbiohub.org/)

* Human Cell Atlas (https://www.humancellatlas.org/)

* 10x Genomics demonstrated protocols for sample preparation
(https://support.10xgenomics.com/single-cell-gene-expression/sample-prep)

*  Worthington Tissue Dissociation Guide
* (http://www.worthington-biochem.com/tissuedissociation/default.html)

* Broad Institute Single Cell Portal
(https://singlecell.broadinstitute.org/single_cell)

* List of software packages for single cell data analysis
(https://github.com/seandavi/awesome-single-cell)

* SPLIT-seq (https://sites.google.com/uw.edu/splitseq)

* CITE-seq (https://cite-seq.com/)

. Biolegend TotalSeq (https://www.biolegend.com/en-us/totalseq)
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