Introduction to ChIP-seq

Joanna Krupka

CRUK Summer School in Bioinformatics

Cambridge, July 2020
Before we start...

How many of you have used ChIP-Seq or think will use it in the future?

[Yes] [No]
Workflow for today

9:30-10:30 Introduction to ChIP seq

10:40-11:00 Peak calling

10:40-13:50 Evaluation of ChIP seq Data

14:30-15:30 Differential Binding

15:40-17:00 Downstream analysis
ChIP-Seq workflow

- Sequencing platform
- Image analysis (base calling)
- 35–50 bp sequences
- Genome alignment
- Peak calling
- Quality scores
- Control sample
- Check sequencing depth
- Enriched regions
 - Motif discovery
 - Relationship to gene structure
 - Integration with gene expression
 - Gene set analysis
 - Differential profile analysis
 - Other advanced analysis
 - Visualization with genome browser

Gene expression regulation is complex

Transcription factor expressed?

Chromatin structure (open/close)

Transcriptional machinery

ChIP-Seq for TF

ChIP-Seq for Chromatin marks

What is ChIP-Seq?

Chromatin immunoprecipitation + NGS

Aim: identify binding sites of DNA-binding proteins or the location of modified histones *in vivo* on a *genome scale*

Transcription factors
- DNA binding proteins (HP1, Lamins, HMGA etc.)
- RNA Pol-II occupancy

Histone modification marks

There are some proteins bound to DNA...

Transcription factors
DNA binding proteins (HP1, Lamins, HMGA etc.)
RNA Pol-II

Histones (H1, H2A, H2B, H3 and H4)
Usually - formaldehyde crosslinking

There may also be changes in nucleosome positions and histone modifications during the course of the experiment in the absence of crosslinking. ChIP without X-linking is called: N-ChIP ("native") - more effective in some biological models (eg. muscle tissue)
The DNA is sheared into small fragments - usually 200-500 bp in length

But it is not entirely random!

Eg. open chromatin regions tend to be fragmented more easily than closed regions, which creates an uneven distribution of sequence tags across the genome.
The sheared protein-bound DNA is immunoprecipitated using a specific antibody
The antibody binds primarily to the protein of interest but there may be cross reactivity with other proteins with similar epitopes.
Reverse cross-reaction, purify DNA, sequence

Sequencing ~10 ng of ChIP DNA recommended

NOTE: beware of amplification bias - fewer cycles, the better!
Main experimental steps in the ChIP-Seq protocol

The typical ChIP assay usually take 4–5 days, and require approx. 10^6 - 10^7 cells.

Recipe for successful experiment:
- **Good Experimental Design** (enough replicates!)
- Optimized Conditions (Cells, Antibodies ...)
- Good biological question that can be answered with this technique
- Efficient and specific antibody
- Sufficient amount of starting material (ChIP DNA depends on cell type, abundance of the mark or protein, quality of antibody)
Pitfalls during ChIP-Seq protocol

1. Chromatin fragmentation
 Size matters (not too big and not too small)
 Can vary between cell types
 Stringency of washes

2. Gel size selection
 The most variable step
 Differences between investigators!

3. Specificity of the antibody
 Variability between different lot numbers of the same antibody!
 Time-consuming, but rewarding validation: ~1/4 of the tested histone antibodies failed specificity criteria by dot blot or western blot

 Histone modifications:
 - the reactivity of the antibody with unmodified histones or non-histone proteins should be checked by western blotting.
 - cross-reactivity with similar histone modifications (validated using eg. siRNAs against enzymes that are predicted to add the modifying group)

Primary mode of characterization

- immunoblot of immunofluorescence
- demonstrate that the protein of interest can be efficiently immunoprecipitated from a nuclear extract.

Secondary mode of characterization

- Knock-d
- Immunoprecipitation followed by mass-spectrometry
- Immunoprecipitation with multiple antibodies against different parts of the target protein or members of the same complex to demonstrate specificity of the antibody

Full guideline:

What generates ChIP-Seq signal?

ChIP-Seq signal depends on:

- The number of active binding sites
- The number of starting genomes (number of cells)
- IP efficiency (antibody quality, biological model used)
- GC rich content (bias in fragment selection, during amplification)
- Open chromatin regions fragment more easily than closed regions (open region will generate more reads than closed one due to non-random fragmentation)
- Differential mappability of short reads to repeat-rich genomic regions (Teytelman et al., 2009, Aird et al., 2011)
- Hyper-ChIPable regions
What generates ChIP-Seq signal?

ChIP-Seq signal depends on:

- The number of active binding sites
- The number of starting genomes (number of cells)
- IP efficiency (antibody quality, biological model used)
- Open chromatin regions fragment more easily than closed regions (open region will generate more reads than closed one due to non-random fragmentation)
- Differential mappability of short reads to repeat-rich genomic regions (Teytelman et al., 2009, Aird et al., 2011)
- Hyper-ChIPable regions

A peak in the ChIP–seq profile must be compared with the same region in a matched control sample to determine its significance.
We **DO** need controls

2 types of controls:

- **Check of preferential enrichment step:**
 - test for different types of artefacts
 - sonicated DNA before immunoprecipitation (input)
 - mock immunoprecipitation with an unrelated antibody (IgG)
 - mock IP DNA (DNA obtained from IP without antibodies)

- **Check of biological specificity of the signal**
 - Knock-down/WT sample
 - make biological interpretation easier
Signal-to-noise
Different types of signal

Transcription factors
Sharp & localised

Histone modifications
Varying:
Sharp or broad
Broad peaks: more difficult to find, need deeper sequencing!

Rule of thumb: More prominent peaks are identified with fewer reads, versus weaker peaks that require greater depth.
How deep is deep enough?

It’s not a simple question!

Saturation:
measure of the fraction of library complexity that was sequenced in a given experiment; depends on library complexity and sequencing depth

Ideally - sequencing should be deep enough to capture all real binding sites (fully saturated the library)

Park P et al. 2009

Significant or not?

Not significant

Too low enrichment
Too few tags

Significant

High enrichment
Too few tags

Low enrichment
A lot of tags
Simulation to characterise the fraction of the peaks that would be recovered if a smaller number of tags had been sequenced.

NOTE: Even for transcription factors (sharp, clear peaks), the number of valid peaks increases without saturation as more reads are sequenced if only statistical significance is used. Even very small peaks become statistically significant when the number of reads at those peaks gets larger.
‘Sufficient depth’: the sequencing depth at which the percent gain in enriched regions per 1 million additional sequence reads falls below 1%

There is no universal “sufficient” sequencing depth

20 mln reads - TFs (ENCODE standard)
25 mln reads - H3K4me3
35 mln reads - H3K36me3
40 mln reads - H3K27me3

Active promoters: H3K4me3, H3K9Ac
Active enhancers: H3K27Ac, H3K4me1
Repressors: H3K9me3, H3K27me3
Transcribed gene bodies: H3K36me3
Blacklisted regions are genomic regions with anomalous, unstructured, high signal or read counts in NGS experiments, independent of cell type or experiment. Including these regions can lead to false-positive peaks. Often found at repetitive regions (centromeres, telomeres, Satellite repeats)

Problems:
- tend to have a lot of multi-mapping reads
- high variance of mappability
- difficult to remove with simple mappability filters

Once reads have been aligned to the reference genome, “blacklisted regions” are removed from BAM files before peak calling. Alternatively, peaks overlapping blacklisted regions can be removed.

https://www.encodeproject.org/files/ENCFF356LFX/
1. Sufficient sequencing depth: varies between different targets
2. Sufficient amount of starting material
3. Optimisation (antibodies, cells)
4. Control libraries!
5. Reproducibility: at least 3x!