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What can we do with ChIP seq?

Annotation of genomic features to peaks

Functional enrichment analysis: Ontologies, Gene Sets, Pathways
Normalization and Visualization

Motif identification and Motif Enrichment Analysis
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1. Annotation of Genomic Features to
Peaks



1. Annotation of genomic features to peaks
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2. Functional Enrichment Analysis



2. Functional enrichment analysis

Databases of functional list of

genes
Functional list of

genes e GO

(eg. genes involved o KEGG

in unfolded protein e Reactome
response) o

Is there statistically
significant overlap?



2. Functional enrichment analysis
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‘EEEA]: Overview News Use GREAT Demo Video HowtoCite Help Forum

GREAT version 4.0.4  current (08/19/2019 to now) v

Functional enrichment analysis

GREAT predicts functions of cis-regulatory regions.

G REAT (htto://qreat.stanford.edu/oublic/html/)

Many coding genes are well annotated with their biological functions. Non-coding regions typically lack su
biological meaning to a set of non-coding genomic regions by analyzing the annotations of the nearby gen
studying cis functions of sets of non-coding genomic regions. Cis-regulatory regions can be identified via t

Widely used Web based tOO|S ChlP-seq) and by computational methods (e.g. comparative genomics). For more see our Nature Biotech F
Associates genomic regions with genes by defining a ‘regulatory domain’ for

each gene in the genome.
o 5 kb upstream and 1 kb downstream from its transcription start site (denoted below as 5+1 kb)
o an extension up to the basal regulatory domain of the nearest upstream and downstream

genes within 1 Mb (user can modify the length)
o refine the regulatory domains of a handful of genes, including several global control regions20,
by using their experimentally determined regulatory domains

Incorporates annotations from 20 ontologies and is available as a web

application
McLean et al. 2010, Nat Biotech


http://great.stanford.edu/public/html/

3. Normalization and Visualization



3. Normalization and visualization

Deeptools

e Plot signal profiles

e (Customized heat-maps

e PCA, correlation and fingerprint plots (chip
enrichment)
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4. Motif Analysis

Motifs are genomic sequences that specifically bind to transcription factors.

There are many possible bases at certain positions in the motif, whereas other
positions have a fixed base.

Sequence logo diagram for TP73. The height of the letter
represents the frequency of the nucleotide observed.



4. Motif Analysis

There are many other formats (eg. c,
d, e of the right figure) to show the
motif information (eg. PWM)

TFBS databases

JASPAR
TRANSFAC
Swissregulon
HOCOMOCO
HOMER

Wasserman & Sandelin, 2004, Nat Rev Genet.
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4. Motif Analysis

Two different ways of motif detection in sequences

1. Known Transcription Factor Binding Sites (TFBS) detection - Use prior
information about TF binding motifs (PWMs)
2. De novo motif identification — Pattern discovery methods

Adapted from Shamith Samarajiwa’s slides



4. Motif Analysis

Motif Enrichment Analysis

e Identifies over and under-represented known motifs in a set of regions
e -> background is required.
e Picking the right background model will determine the success of the motif

enrichment analysis:
o  All promoters from protein coding genes
o  Open chromatin regions

Adapted from Shamith Samarajiwa’s slides



4. Motif Analysis

Motif Enrichment Analysis

e Identifies over and under-represented known motifs in a set of regions
e -> background is required.
e Picking the right background model will determine the success of the motif

enrichment analysis:
o  All promoters from protein coding genes
Open chromatin regions
Shuffled test sequence set
A sequence set similar in nucleotide composition, length and number to the test set
Higher order Markov model based backgrounds

O O O O

Adapted from Shamith Samarajiwa’s slides



4.

Motif Analysis

HOMER (http://homer.ucsd.edu/homer/)

Perform both known TFBS detection and de-novo motif
identification

Motif Enrichment analysis

If you do not give background regions, the background
sequences will be randomly selected from the genome,
matched for GC% content

findMotifs.pl discover motifs in promoter
findMotifsGenome.pl discover maotifs in genomic regions

Heinz et al. Mol Cell, 2010


http://homer.ucsd.edu/homer/

4. Motif Analysis

MEME Suite
(http://meme-suite.org/)

Given a set of genomic regions, it
performs

e De-novo motif identification
(MEME, DREME)

e Compare identified motifs to
known motifs (TOMTOM)

e Known TFBS detection
(Centrimo, AME)

The MEME Suite
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http://meme-suite.org/

4. Motif Analysis

Limitations

"Futility Theorem” of motif finding

Extremely high false positive rate in TFBSs (Transcription Factor Binding Sites)

prediction, as the methods detect potential binding sites, NOT NECESSARILY
those of functional importance

Wasserman and Sandelin, 2004, Nat Rev Genet
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