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Grand Picture of Statistics
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Statistical tests

Assess how likely the observed test statistics is
compared to the test statistics distribution under H0:
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P-value for a two-sided test: p-value = P (|T | > Tobs)
i.e. the probability of getting a test statistic as extreme or more extreme than the

calculated test statistic if H0 is true
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Statistical tests
4 possible outcomes

Conclude:
I if p-value > α → do not reject H0.
I if p-value < α → reject H0 in favour of H1.

Test Outcome

H0 not rejected H1 accepted

Unknown Truth H0 true 1− α [TN] α [FP]

H1 true β [FN] 1− β [TP]

where
I α is the type I error,
I β is the type II error.

Want to minimise FP and FN through design
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Experimental design
3 fundamental aspects of sounds experiments (Fisher 1935)

I Replication
Try to capture all sources of variability
(Biological versus technical variability)

I Blocking
Try to remove technical biases/confounding
(Lane and batch effects)

I Randomisation
Try to remove confounding due to other factors
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Experimental design
Sample size per condition

Sample size calculation:
Aim is to define the sample size allowing to detect an effect of a
given size at the α level with a given probability (power):
I δ, the effect size: function of µL and µB

(log fold change, standardised difference),
I 1− β, the power,
I α, the type I error.
I φ, nuisance parameters

(variability, sequencing depth, multiplicity correction)

(Wu, Wang and Wu (2015))
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Statistical modelling

Statistical Hypotheses
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Statistical modelling

y = f (X) + ε

E[y] = f (X)

where

I y denotes the (n × 1) vector of
expression intensities of a given gene,

I X denotes the (n × p) design/predictor matrix,

I ε denotes the (n × 1) stochastic error vector,

I E[y] denotes the expectation of y
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Statistical modelling : Linear regression

y = Xβ + ε

E[y] = Xβ

where

I y denotes the (n × 1) vector of
expression intensities of a given gene,

I X denotes the (n × p) design/predictor matrix,

I β denotes the (p × 1) parameter vector,

I ε ∼ N(0, σ2) denotes the (n × 1) stochastic
error vector,

I E[y] denotes the expectation of y
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Statistical modelling : Linear regression

(Wikipedia)

y = Xβ + ε

E[y] = Xβ

where

I y denotes the (n × 1) vector of
expression intensities of a given gene,

I X denotes the (n × p) design/predictor matrix,
I β denotes the (p × 1) parameter vector,
I ε ∼ N(0, σ2) denotes the (n × 1) stochastic

error vector,
I E[y] denotes the expectation of y
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Statistical modelling : Strategy

I Collect the information related to each sample for the predictors
of interest,

I define β, the sets of parameters we are interested in,
I build the X matrix that relates

the sample information with the β,
I estimate the β,
I use statistical inference to assess significance (p-values).
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Statistical modelling : Contrast matrices

Contrast matrices for models with

I one factor / categorical predictor,

. two experimental conditions (dichotomous predictor),
t-test

. several experimental conditions,
ANOVA

I two factors / categorical predictors,

. without interaction,

. with interaction,

Two-way ANOVA
I categorical and continuous factors.
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Sample Treatment
Sample1 Treatment A

Sample 2 Control

Sample 3 Treatment A

Sample 4 Control

Sample 5 Treatment A

Sample 6 Control

Number of samples: 6
Number of factors: 1 with 2 levels (Control and Treatment A)

Possible parameters (What differences are important)?

- Effect of Treatment A
- Effect of Control

Design matrix for models with 
a two-level factor
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Design matrix for models with 
a two-level factor

X design Matrix
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Sample1 Treatment A
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Sample 3 Treatment A
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C is the mean expression of the control
T is the mean expression of the treatment
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Different parameterisation: using intercept

Sample Treatment

Sample1 Treatment A

Sample 2 Control

Sample 3 Treatment A

Sample 4 Control

Sample 5 Treatment A

Sample 6 Control

Let’s now consider this parameterization:

C= Baseline expression
TA= Baseline expression + effect of treatment

So the set of parameters are:

C = Control (mean expression of the control)
a = TA – Control (mean change in expression 
under treatment

Design matrix for models with 
a two-level factor
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X design Matrix
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Different parameterization: 
using an intercept

The Intercept measures the baseline 
expression and a measures now the 
differential expression between Treatment A 
and Control

Design matrix for models with 
a two-level factor

! Parameter vector
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The two parameterizations are equivalent but
allows to test different contrasts/parameters

Contrast matrix
Contrast matrices allow us to 
estimate (and test) linear 
combinations of our 
coefficients. 
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Design matrix for models with 
a two-level factor

17



TreatmeSample Treatment
Sample1 Treatment A

Sample 2 Treatment B

Sample 3 Control

Sample 4 Treatment A

Sample 5 Treatment B

Sample 6 Control

Number of samples: 6
Number of factors: 1 with 3 levels (Control, Treatment A, Treatment B)

Possible parameters (What differences are important)?
- Effect of Treatment A
- Effect of Treatment B
- Effect of Control
- Differences between treatments?

Design matrix for models with 
a three-level factor
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Sample Treatment

Sample1 Treatment A
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Sample 3 Control
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Sample 6 Control

Design matrix for models with 
a three-level factor

Control = Baseline
TA = Baseline + a
TB = Baseline + b
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The model with intercept always take one level as a reference group:

The reference group here is 
treatment A, the coefficients are 
comparisons against it! 

By default, R uses the 
first level as baseline

Design matrix for models with 
a three-level factor
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> one3levelfactor = data.frame(condition = 
rep(c("TreatmentA", "TreatmentB", "Control"), 2))

# model without intercept and default levels:
> X1 = model.matrix(~ condition - 1, data = one3levelfactor) 

# model with intercept and default levels 
> X2 = model.matrix(~ condition, data = one3levelfactor)

# model with intercept and self-defined levels 
> levels(one3levelfactor$condition) 
> levels(one3levelfactor$condition) = c("TreatmentB", "TreatmentA", "Control")
> X3 = model.matrix(~ condition, data = one3levelfactor)

Design matrix for models with 
a three-level factor: R code
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Build contrast matrices for all pairwise comparisons for this design:
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Design matrix for models with 
a three-level factor: Exercise
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Build contrast matrices for all pairwise comparisons for these designs:
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Models with 2 factors

Sample Treatment ER status
Sample1 Treatment A +

Sample 2 No Treatment +

Sample 3 Treatment A +

Sample 4 No Treatment +

Sample 5 Treatment A -

Sample 6 No Treatment -

Sample 7 Treatment A -

Sample 8 No Treatment -

Number of samples: 8
Number of factors: 2 two-level factors

> two2levelfactor = data.frame(treatment = rep(c("TreatA","NoTreat"),4),
er = rep(c("+","-"),each=4))

24



(Adapted from Natalie Thorne, Nuno L. Barbosa Morais)

Treat 
effect

Both 
effects

ER 
effect

Treat  x ER positive 
interaction

Treat x ER negative 
interaction

Treat + 
ER effects

Treat 
effect

Both 
effects

ER 
effect

Treat x 
ER effects

Treat x 
ER effects

No Treat Treat A
ER - S6, S8 S5, S7

ER + S2, S4 S1, S3

Models with 2 factors: interactions
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Models with 2 factors: no interaction

X1 = model.matrix(~ treatment + er, data=two2levelfactor)
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Interaction effect of 
Treatment A on ER+ samples

No Treat Treat A
ER - S6, S8 S5, S7

ER + S2, S4 S1, S3

Models with 2 factors: with interaction
> X2 = model.matrix(~ treatment * er, data=two2levelfactor)
> X3 = model.matrix(~ treatment + er + treatment:er, data=two2levelfactor)
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Models with 2 factors: possible scenarios

2 factors:
I cell type (2 levels): luminal versus basal
I mouse type (3 levels): virgin, pregnant, lactating
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Sample ER Dose
Sample 1 + 37
Sample 2 - 52
Sample 3 + 65
Sample 4 - 89
Sample 5 + 24
Sample 6 - 19
Sample 7 + 54
Sample 8 - 67

Number of samples: 8
2 predictors: ER (a two-level factor) and Dode (a continuous predictor)

> mixedpredictors = data.frame(er = rep(c("+","-"),4),
dose = c(37,52,65,89,24,19,54,67))

Models with 2 predictors: 
a factor and a continuous one
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X = model.matrix(~ er + dose, data= mixedpredictors) 

If we consider the effect of dose 
linear we use 1 coefficient (degree 
of freedom). We can also model it 
as non-linear (using splines, for 
example).

Sample ER Dose

Sample 1 + 37

Sample 2 - 52

Sample 3 + 65

Sample 4 - 89

Sample 5 + 24

Sample 6 - 19

Sample 7 + 54

Sample 8 - 67

Models with 2 predictors: 
a factor and a continuous one
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Model Estimation and inference

β

β̂

se(β̂)

Parameter of interest

Estimate of the parameter of interest

Standard Error of the estimator of the parameter of interest

β̂ = (XTX)−1XTY

se(β̂i ) =σ ci where ci is the i
th diagonal element of XTX( )

−1

ŷ = Xβ̂
e = y− ŷ

Fitted values (predicted by the model)

Residuals (observed errors)

Y = X!+"

MLE : β̂ = argmax{L(β | x)}
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Analysis of gene expression measured with
RNAseq
Part II

dominique-laurent.couturier@cruk.cam.ac.uk [Bioinformatics core]

(Source: O. Rueda, CRUK-CI; G. Marot, INRIA)



Examples of data with non-normal conditional distributions
Total time taken to consume

a glass of wine
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Linear model not suitable:
I Assumed model:

y = Xβ + ε where ε ∼ N(0, σ2),

. theoretical range of ε = [−∞,+∞],

. Xβ not bounded to [0,∞] or [0, 1],

. Var[y] independent of E[y].

I Solution:
y|(X,β, φ) ∼ distribution(function(Xβ), φ),

where distribution belongs to the exponential family and function is
monotonically increasing.
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GLM: conditional distributions

y|(X,β, φ) ∼ distribution(function(Xβ), φ),

I Some possible conditional distributions :
statistical probability mass functions & density functions

. Within the exponential family [‘classical’ GLM framework]

normal
exponential
gamma

chi-squared
beta
Dirichlet

Poisson
Negative Binomial
Bernoulli

Inverse Wishart

...

. Outside the exponential family [‘extended’ GLM framework]

Box-Cox power
exponential
exponential Gaussian
generalized beta
generalized gamma
generalized inverse

Gaussian
inverse Gaussian
logistic
power exponential
reverse Gumbel
skew power exponential

Weibull
Pareto type I, II, III
Poisson inverse Gaussian

...

34



GLM: link functions

y|(X,β, φ) ∼ distribution(function(Xβ), φ),

I Most used link functions :
connection between y and Xβ

. to restrict f(Xβ) to belong to [0,∞[:

. log link: f(z) = ez

f
(z
)

-4 -2 0 2 4

z

0

50

100

150

f(z) = ez
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Distribution for count data: Poisson
Example:
Interest for the number of reads/counts for gene ‘X’ for a sample basal cells of n mice

Sample of n mice: i = 1 i = 2 i = 3 · · · i = 115

yi 607 873 1218 · · · 2715

If, during a time interval or in a given area,
I events occur independently,
I at the same rate,
I and the probability of an event to occur in a small interval (area) is

proportional to the length of the interval (size of the area),

then,
I a count occurring in a fixed time interval or in a given area, Y , may be

modelled by means of a Poisson distribution with parameter µ:

Y ∼ Poisson(µ) where µ = E[Y ] = Var[Y ],

I the probability of observing x events during a fixed time interval or in a
given area is given by

P (Y = y|µ) = µye−µ

y!
.
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Distribution for count data: Poisson vs Neg. Bin.
Experimental design Exploration Normalization Di↵erential analysis Multiple testing

Exploratory data analysis

scores between 0 and 1 ) underdispersion (variance smaller than
mean)

scores greater than 1 : overdispersion ) adapted to biological
replicates
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Distribution for count data: Poisson vs Neg. Bin.
Experimental design Exploration Normalization Di↵erential analysis Multiple testing

Available tests

Models of count data

Data transformation and gaussian-based model : limma -
voom

Poisson : TSPM

Negative Binomial : edgeR, DESeq(2), NBPSeq, baySeq,
ShrinkSeq, ...

Statistical approaches

Frequentist Approach : edgeR, DESeq(2), NBPSeq, TSPM, ...

Bayesian Approach : baySeq, ShrinkSeq, EBSeq, ...

Non-parametric approach : SAMSeq, NOISeq, ...
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2a/ Negative binomial

I General form:
Yi ∼ NB(µi, φ)

fYi (yi|µi, φ) =
Γ(y + 1

φ
)

Γ( 1
φ

)Γ(y + 1)

(
φµi

1 + φµi

)y ( 1

1 + φµi

) 1
φ

with expectation and variance given by

. E[Yi] = µi = exp(xT
i β)

. Var[Yi] = µi(1 + φµi)
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2b/ Negative binomial: Estimation
Experimental design Exploration Normalization Di↵erential analysis Multiple testing

Dispersion estimation with DESeq2

Hypothesis : genes of similar average expression strength have
similar dispersion

1 Estimate gene-wise dispersion estimates using maximum
likelihood (ML) (black dots)

2 Fit a smooth curve (red line)
3 Shrink the gene-wise dispersion estimates (empirical Bayes

approach) toward the values predicted by the curve to obtain
final dispersion values (blue arrow heads).
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2b/ Negative binomial: Controlling for library size

I For a given gene, the variance of the Negative Binomial for the
ith sample is given by

Var(Yi) = µi(1 + φµi)

I To control for the library size Si of the ith sample, DESeq2 uses

Var(Yi) = Siµi(1 + φSiµi)
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Multiplicity Correction
Part III

dominique-laurent.couturier@cruk.cam.ac.uk [Bioinformatics core]

(Source: O. Rueda, CRUK-CI; G. Marot, INRIA)



3/ Multiplicity correction
Experimental design Exploration Normalization Di↵erential analysis Multiple testing

Multiple Testing

False positive (FP) : A non di↵erentially expressed (DE) gene
which is declared DE.

For all ’genes’, we test H0 (gene i is not DE) vs H1 (the gene is
DE) using a statistical test

Problem

Let assume all the G genes are not DE. Each test is realized at ↵
level
Ex : G = 10000 genes and ↵ = 0.05 ! E (FP) = 500 genes.
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3/ Multiplicity correction
Experimental design Exploration Normalization Di↵erential analysis Multiple testing

The Family Wise Error Rate (FWER)

Definition

Probability of having at least one Type I error (false positive), of
declaring DE at least one non DE gene.

FWER = P(FP  1)

The Bonferroni procedure

Either each test is realized at ↵ = ↵⇤/G level
or use of adjusted pvalue pBonfi = min(1, pi ⇤G ) and FWER  ↵⇤.
For G = 2000,  ↵⇤ = 0.05, ↵ = 2.510�5.

Easy but conservative and not powerful.
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The False Discovery Rate (FDR)

Idea : Do not control the error rate but the proportion of error
) less conservative than control of the FWER.

Definition

The false discovery rate of [Benjamini and Hochberg, 1995] is the
expected proportion of Type I errors among the rejected hypotheses

FDR = E(FP/P) if P > 0 and 0 if P = 0

Prop

FDR  FWER
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Standard assumption for p-value distribution
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p-values histograms for diagnosis

Examples of expected overall distribution

(a) : the most desirable shape

(b) : very low counts genes usually have large p-values

(c) : do not expect positive tests after correction
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p-values histograms for diagnosis

Examples of not expected overall distribution

(a) : indicates a batch e↵ect (confounding hidden variables)

(b) : the test statistics may be inappropriate (due to strong
correlation structure for instance)

(c) : discrete distribution of p-values : unexpected
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Multiple testing : key points

Important to control for multiple tests

FDR or FWER depends on the cost associated to FN and FP

Controlling the FWER :

Having a great confidence on the DE elements (strong control).
Accepting to not detect some elements (lack of sensitivity , a few
DE elements)

Controlling the FDR :

Accepting a proportion of FP among DE elements. Very interesting
in exploratory study.
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