

Statistical analysis of RNASeq Data

Introduction to RNA-seq data analysis

dominique-laurent.couturier@cruk.cam.ac.uk [Bioinformatics core]

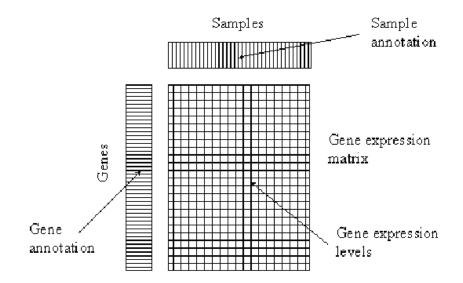
(Source: O. Rueda, CRUK-Cl; G. Marot, INRIA)

raw count for gene i, sample j

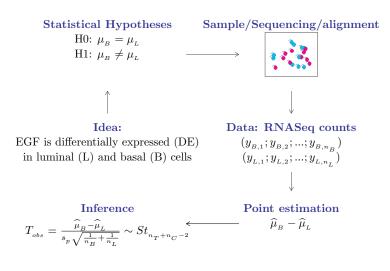
ounts" scaled by a normaliza factor

one dispersion per gene

Introduction

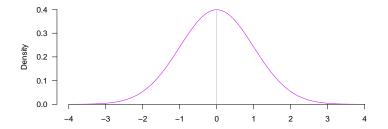


Grand Picture of Statistics



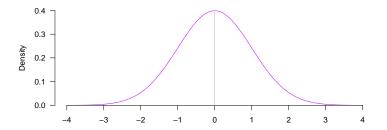
Statistical tests

Assess how likely the observed test statistics is compared to the test statistics distribution under H0:



Statistical tests

Assess how likely the observed test statistics is compared to the test statistics distribution under H0:



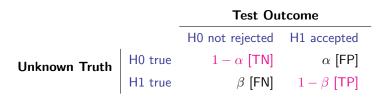
P-value for a two-sided test: p-value = $P(|T| > T_{obs})$ i.e. the probability of getting a test statistic as extreme or more extreme than the calculated test statistic if H0 is true

4

Statistical tests 4 possible outcomes

Conclude:

- ▶ if *p*-value > α → do not reject H0. ▶ if *p*-value < α → reject H0 in favour of H1.



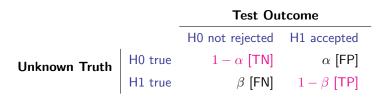
where

 $\blacktriangleright \alpha$ is the type I error, \triangleright β is the type II error.

Statistical tests 4 possible outcomes

Conclude:

- ▶ if *p*-value > α → do not reject H0. ▶ if *p*-value < α → reject H0 in favour of H1.



where

 $\blacktriangleright \alpha$ is the type I error,

 \triangleright β is the type II error.

Want to minimise FP and FN through design

Experimental design

3 fundamental aspects of sounds experiments (Fisher 1935)

Replication

Try to capture all sources of variability (Biological versus technical variability)

Blocking

Try to remove technical biases/confounding (Lane and batch effects)

Randomisation

Try to remove confounding due to other factors

Experimental design Sample size per condition

Sample size calculation:

Aim is to define the sample size allowing to detect an effect of a given size at the α level with a given probability (power):

- ▶ δ , the effect size: function of μ_L and μ_B
 - (log fold change, standardised difference),
- ▶ 1β , the power,
- $\blacktriangleright \alpha$, the type I error.
- \blacktriangleright ϕ , nuisance parameters

(variability, sequencing depth, multiplicity correction)

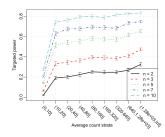
Experimental design Sample size per condition

Sample size calculation:

Aim is to define the sample size allowing to detect an effect of a given size at the α level with a given probability (power):

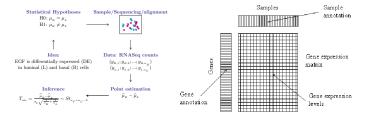
- ▶ δ , the effect size: function of μ_L and μ_B (log fold change, standardised difference),
- ▶ 1β , the power,
- $\blacktriangleright \alpha$, the type I error.
- \blacktriangleright ϕ , nuisance parameters

(variability, sequencing depth, multiplicity correction)

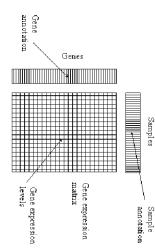


(Wu, Wang and Wu (2015))

Statistical modelling



Statistical modelling

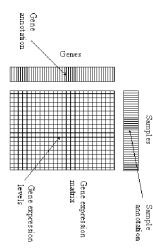


$$\mathbf{y} = f(\mathbf{X}) + \epsilon$$
$$\mathsf{E}[\mathbf{y}] = f(\mathbf{X})$$

where

- y denotes the (n × 1) vector of expression intensities of a given gene,
- X denotes the $(n \times p)$ design/predictor matrix,
- ϵ denotes the (n \times 1) stochastic error vector,
- $\blacktriangleright\ \mathsf{E}[\mathbf{y}]$ denotes the expectation of \mathbf{y}

Statistical modelling : Linear regression



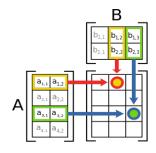
$$\mathbf{y} = \mathbf{X} \boldsymbol{eta} + \boldsymbol{\epsilon}$$

 $\mathsf{E}[\mathbf{y}] = \mathbf{X} \boldsymbol{eta}$

where

- y denotes the (n × 1) vector of expression intensities of a given gene,
- X denotes the $(n \times p)$ design/predictor matrix,
- β denotes the (p \times 1) parameter vector,
- $\blacktriangleright~\epsilon \sim N(0,\sigma^2)$ denotes the (n \times 1) stochastic error vector,
- $\blacktriangleright~\mathsf{E}[\mathbf{y}]$ denotes the expectation of \mathbf{y}

Statistical modelling : Linear regression



(Wikipedia)

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ $E[\mathbf{y}] = \mathbf{X}\boldsymbol{\beta}$

where

- y denotes the (n × 1) vector of expression intensities of a given gene,
- X denotes the $(n \times p)$ design/predictor matrix,
- β denotes the $(p \times 1)$ parameter vector,
- $\blacktriangleright~\epsilon \sim N(0,\sigma^2)$ denotes the (n \times 1) stochastic error vector,
- \blacktriangleright E[y] denotes the expectation of y

Statistical modelling : Strategy

- Collect the information related to each sample for the predictors of interest,
- define β , the sets of parameters we are interested in,
- build the X matrix that relates the sample information with the β,
- estimate the β ,
- ▶ use statistical inference to assess significance (*p*-values).

Statistical modelling : Contrast matrices

Contrast matrices for models with

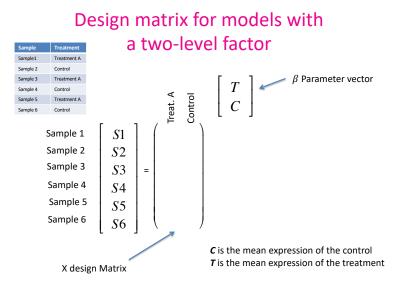
- ▶ one factor / categorical predictor,
 - two experimental conditions (dichotomous predictor), t-test
 - several experimental conditions, ANOVA
- ▶ two factors / categorical predictors,
 - ▷ without interaction,
 - ▷ with interaction,
 - Two-way ANOVA
- categorical and continuous factors.

Sample	Treatment
Sample1	Treatment A
Sample 2	Control
Sample 3	Treatment A
Sample 4	Control
Sample 5	Treatment A
Sample 6	Control

Number of samples: 6 Number of factors: 1 with 2 levels (Control and Treatment A)

Possible parameters (What differences are important)?

- Effect of Treatment A
- Effect of Control



Different parameterisation: using intercept

Sample	Treatment
Sample1	Treatment A
Sample 2	Control
Sample 3	Treatment A
Sample 4	Control
Sample 5	Treatment A
Sample 6	Control

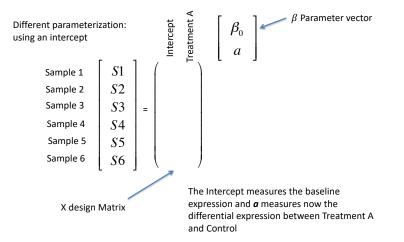
Let's now consider this parameterization:

C= Baseline expression

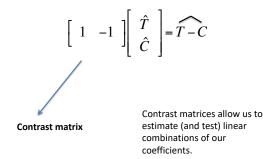
T_A= Baseline expression + effect of treatment

So the set of parameters are:

C = Control (mean expression of the control) a = T_A – Control (mean change in expression under treatment



The two parameterizations are equivalent but allows to test different contrasts/parameters



Sample	Treatment
Sample1	Treatment A
Sample 2	Treatment B
Sample 3	Control
Sample 4	Treatment A
Sample 5	Treatment B
Sample 6	Control

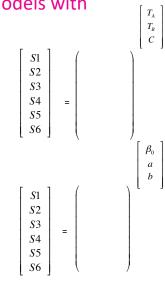
Number of samples: 6 Number of factors: 1 with 3 levels (Control, Treatment A, Treatment B)

Possible parameters (What differences are important)?

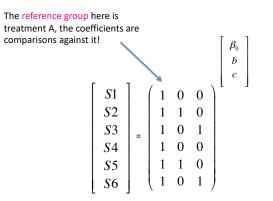
- Effect of Treatment A
- Effect of Treatment B
- Effect of Control
- Differences between treatments?

Sample	Treatment	
Sample1	Treatment A	
Sample 2	Treatment B	
Sample 3	Control	
Sample 4	Treatment A	
Sample 5	Treatment B	
Sample 6	Control	
Control = Baselin	e	

 T_A = Baseline + a T_B = Baseline + b



The model with intercept always take one level as a reference group:



By default, R uses the first level as baseline

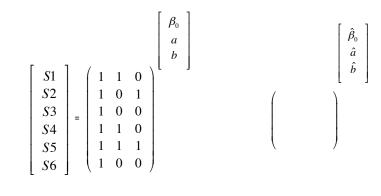
Design matrix for models with a three-level factor: R code

Design matrix for models with a three-level factor: Exercise

Build contrast matrices for all pairwise comparisons for this design:

Design matrix for models with a three-level factor: Exercise

Build contrast matrices for all pairwise comparisons for these designs:

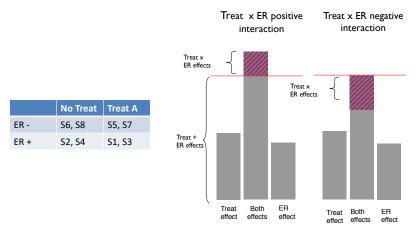


Models with 2 factors

Sample	Treatment	ER status
Sample1	Treatment A	+
Sample 2	No Treatment	+
Sample 3	Treatment A	+
Sample 4	No Treatment	+
Sample 5	Treatment A	-
Sample 6	No Treatment	-
Sample 7	Treatment A	-
Sample 8	No Treatment	-

Number of samples: 8 Number of factors: 2 two-level factors

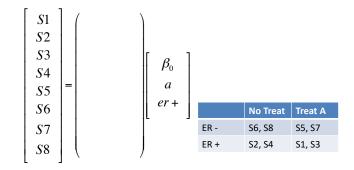
Models with 2 factors: interactions



(Adapted from Natalie Thorne, Nuno L. Barbosa Morais)

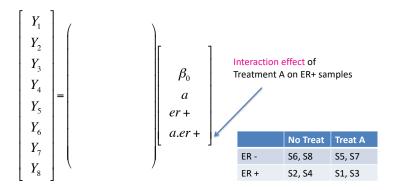
Models with 2 factors: no interaction

X1 = model.matrix(~ treatment + er, data=two2levelfactor)



Models with 2 factors: with interaction

```
> X2 = model.matrix(~ treatment * er, data=two2levelfactor)
> X3 = model.matrix(~ treatment + er + treatment:er, data=two2levelfactor)
```

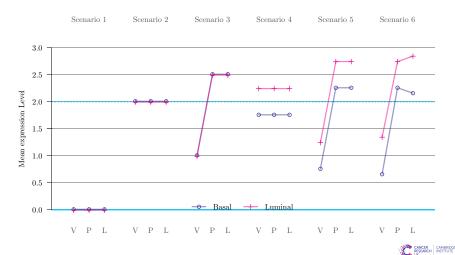


Models with 2 factors: possible scenarios

2 factors:

cell type (2 levels): luminal versus basal

mouse type (3 levels): virgin, pregnant, lactating



Models with 2 predictors: a factor and a continuous one

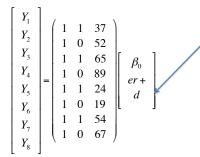
Sample	ER	Dose
Sample 1	+	37
Sample 2	-	52
Sample 3	+	65
Sample 4	-	89
Sample 5	+	24
Sample 6	-	19
Sample 7	+	54
Sample 8	-	67

Number of samples: 8

2 predictors: ER (a two-level factor) and Dode (a continuous predictor)

Models with 2 predictors: a factor and a continuous one

X = model.matrix(~ er + dose, data= mixedpredictors)



If we consider the effect of dose *linear* we use 1 coefficient (degree of freedom). We can also model it as non-linear (using splines, for example).

Sample	ER	Dose
Sample 1	+	37
Sample 2		52
Sample 3	+	65
Sample 4		89
Sample 5	+	24
Sample 6		19
Sample 7	+	54
Sample 8		67

Model Estimation and inference

 $Y = X\beta + \varepsilon$

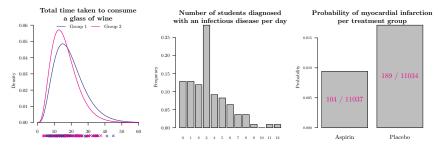
β Parameter of interest Â Estimate of the parameter of interest $\hat{\beta} = (X^T X)^{-1} X^T Y$ MLE: $\hat{\beta} = \arg \max\{L(\beta \mid x)\}$ $se(\hat{\beta}_i) = \sigma \sqrt{c_i}$ where c_i is the *i*th diagonal element of $(X^T X)^{-1}$ $\hat{y} = X\hat{\beta}$ Fitted values (predicted by the model) $e = y - \hat{y}$ Residuals (observed errors)

Analysis of gene expression measured with RNAseq

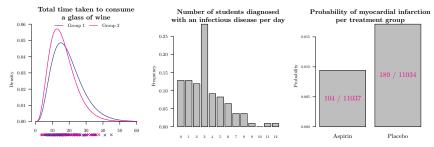
dominique-laurent:couturier@cruk.cam.ac.ukt [Bioinformatics "core]

(Source: O. Rueda, CRUK-CI; G. Marot, INRIA)

Examples of data with non-normal conditional distributions



Examples of data with non-normal conditional distributions



Linear model not suitable:

Assumed model:

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$,

- \triangleright theoretical range of $\epsilon = [-\infty, +\infty],$
- $\triangleright \; \mathbf{X} \boldsymbol{\beta} \; \mathrm{not} \; \mathrm{bounded} \; \mathrm{to} \; [0,\infty] \; \mathrm{or} \; [0,1] \text{,}$
- \triangleright Var[y] independent of E[y].
- Solution:

 $\mathbf{y}|(\mathbf{X}, \boldsymbol{\beta}, \phi) \sim distribution(function(\mathbf{X}\boldsymbol{\beta}), \phi),$

where distribution belongs to the exponential family and function is monotonically increasing.

GLM: conditional distributions

 $\mathbf{y}|(\mathbf{X},\boldsymbol{\beta},\boldsymbol{\phi}) \sim distribution(function(\mathbf{X}\boldsymbol{\beta}),\boldsymbol{\phi}),$

Some possible conditional distributions : statistical probability mass functions & density functions

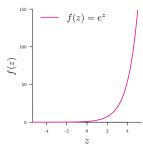
- Within the exponential family ['classical' GLM framework]
 - normal chi-squared Poisson Inverse Wishart exponential beta Negative Binomial gamma Dirichlet Bernoulli …
- Outside the exponential family ['extended' GLM framework]
 - Box-Cox power exponential exponential Gaussian generalized beta generalized gamma generalized inverse

Gaussian inverse Gaussian logistic power exponential reverse Gumbel skew power exponential Weibull Pareto type I, II, III Poisson inverse Gaussian

GLM: link functions

 $\mathbf{y}|(\mathbf{X},\boldsymbol{\beta},\boldsymbol{\phi}) \sim distribution(function(\mathbf{X}\boldsymbol{\beta}),\boldsymbol{\phi}),$

- Most used link functions : connection between y and Xβ
 - $\triangleright \text{ to restrict } f(\mathbf{X}\boldsymbol{\beta}) \text{ to belong to } [0,\infty[:$ $\triangleright \text{ log link: } f(z) = e^z$



Distribution for count data: Poisson

Example:

Interest for the number of reads/counts for gene 'X' for a sample basal cells of n mice

Sample of *n* mice: i = 1 i = 2 i = 3 \cdots i = 115 y_i 607 873 1218 \cdots 2715

If, during a time interval or in a given area,

- events occur independently,
- at the same rate,
- and the probability of an event to occur in a small interval (area) is proportional to the length of the interval (size of the area),

then,

• a count occurring in a fixed time interval or in a given area, Y, may be modelled by means of a Poisson distribution with parameter μ :

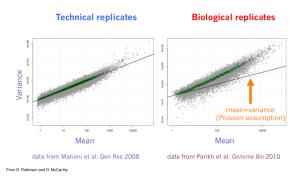
$$Y \sim Poisson(\mu) \text{ where } \mu = \mathsf{E}[Y] = \mathsf{Var}[Y],$$

the probability of observing x events during a fixed time interval or in a given area is given by

$$P(Y = y|\mu) = \frac{\mu^y e^{-\mu}}{y!}.$$

Distribution for count data: Poisson vs Neg. Bin.

scores between 0 and 1 \Rightarrow under dispersion (variance smaller than mean)



scores greater than 1 : overdispersion \Rightarrow adapted to biological replicates

Distribution for count data: Poisson vs Neg. Bin.

Models of count data

- Data transformation and gaussian-based model : limma voom
- Poisson : TSPM
- Negative Binomial : edgeR, DESeq(2), NBPSeq, baySeq, ShrinkSeq, ...

Statistical approaches

- Frequentist Approach : edgeR, DESeq(2), NBPSeq, TSPM, ...
- Bayesian Approach : baySeq, ShrinkSeq, EBSeq, ...
- Non-parametric approach : SAMSeq, NOISeq, ...

2a/ Negative binomial

▶ General form:

$$\begin{split} Y_i &\sim \mathsf{NB}(\mu_i, \phi) \\ f_{Y_i}(y_i | \mu_i, \phi) &= \frac{\Gamma(y + \frac{1}{\phi})}{\Gamma(\frac{1}{\phi})\Gamma(y + 1)} \left(\frac{\phi \mu_i}{1 + \phi \mu_i}\right)^y \left(\frac{1}{1 + \phi \mu_i}\right)^{\frac{1}{\phi}} \end{split}$$

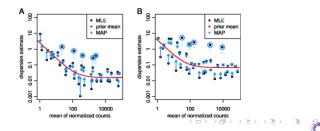
with expectation and variance given by

 $\triangleright \ \mathsf{E}[Y_i] = \mu_i = \exp(\mathbf{x}_i^T \boldsymbol{\beta})$ $\triangleright \ \mathsf{Var}[Y_i] = \mu_i (1 + \phi \mu_i)$

2b/ Negative binomial: Estimation

Hypothesis : genes of similar average expression strength have similar dispersion

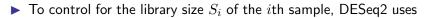
- Estimate gene-wise dispersion estimates using maximum likelihood (ML) (black dots)
- Pit a smooth curve (red line)
- Shrink the gene-wise dispersion estimates (empirical Bayes approach) toward the values predicted by the curve to obtain final dispersion values (blue arrow heads).



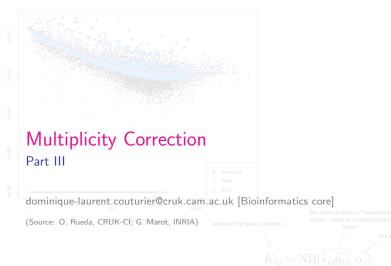
2b/ Negative binomial: Controlling for library size

 For a given gene, the variance of the Negative Binomial for the *i*th sample is given by

$$\mathsf{Var}(Y_i) = \mu_i (1 + \phi \mu_i)$$



$$\mathsf{Var}(Y_i) = S_i \mu_i (1 + \phi S_i \mu_i)$$



False positive (FP) : A non differentially expressed (DE) gene which is declared DE.

For all 'genes', we test H_0 (gene i is not DE) vs H_1 (the gene is DE) using a statistical test

Problem

Let assume all the G genes are not DE. Each test is realized at α level

Ex : G = 10000 genes and $\alpha = 0.05 \rightarrow E(FP) = 500$ genes.

・ロト ・聞ト ・ヨト ・ヨト

Definition

Probability of having at least one Type I error (false positive), of declaring DE at least one non DE gene.

 $FWER = \mathbb{P}(FP \leq 1)$

The Bonferroni procedure

Either each test is realized at $\alpha = \alpha^*/G$ level or use of adjusted pvalue $pBonf_i = min(1, p_i * G)$ and FWER $\leq \alpha^*$. For $G = 2000, \leq \alpha^* = 0.05, \alpha = 2.510^{-5}$.

Easy but conservative and not powerful.

Idea : Do not control the error rate but the proportion of error \Rightarrow less conservative than control of the FWER.

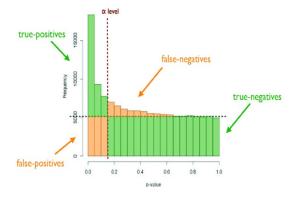
Definition

The false discovery rate of [Benjamini and Hochberg, 1995] is the expected proportion of Type I errors among the rejected hypotheses

 $FDR = \mathbb{E}(FP/P)$ if P > 0 and 0 if P = 0

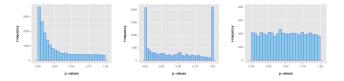
Prop

$\mathsf{FDR} \leq \mathsf{FWER}$



Source : M. Guedj, Pharnext

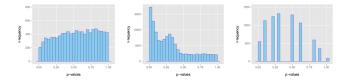
Examples of expected overall distribution



(a) : the most desirable shape

- (b) : very low counts genes usually have large p-values
- (c) : do not expect positive tests after correction

Examples of not expected overall distribution



- (a) : indicates a batch effect (confounding hidden variables)
- (b) : the test statistics may be inappropriate (due to strong correlation structure for instance)
- (c) : discrete distribution of p-values : unexpected

- Important to control for multiple tests
- FDR or FWER depends on the cost associated to FN and FP

Controlling the FWER :

Having a great confidence on the DE elements (strong control). Accepting to not detect some elements (lack of sensitivity \Leftrightarrow a few DE elements)

Controlling the FDR :

Accepting a proportion of FP among DE elements. Very interesting in exploratory study.

<ロト (四) (三) (三) (三)