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Grand Picture of Statistics

Statistical Hypotheses Sample/Sequencing/alignment
HO: pp = p, S
HI: gy # 11y —_— A
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Idea: Data: RNASeq counts

EGF is differentially expressed (DE) (Yp11Yp.2s 3 Ypa, )
in luminal (L) and basal (B) cells (Yp15Yp.23 “’;yhn)
Inference Point estimation
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Statistical tests

Assess how likely the observed test statistics is
compared to the test statistics distribution under HO:
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Statistical tests

Assess how likely the observed test statistics is
compared to the test statistics distribution under HO:
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P-value for a two-sided test: p-value = P(|T'| > Tpps)
i.e. the probability of getting a test statistic as extreme or more extreme than the

calculated test statistic if HO is true
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Statistical tests
4 possible outcomes

Conclude:

» if p-value>a — do not reject HO.
» if p-value<a —  reject HO in favour of H1.

Test Outcome

HO not rejected H1 accepted
HO true 1—a [TN] a [FP]
H1 true B [FN] 1—B[TP]

Unknown Truth

where

» « is the type | error,
» [ is the type Il error.




Statistical tests
4 possible outcomes

Conclude:

» if p-value>a — do not reject HO.
» if p-value<a —  reject HO in favour of H1.

Test Outcome

HO not rejected H1 accepted
HO true 1—a [TN] a [FP]
H1 true B [FN] 1—B[TP]

Unknown Truth

where

» « is the type | error,
» [ is the type Il error.

Want to minimise FP and FN through design




Experimental design
3 fundamental aspects of sounds experiments (Fisher 1935)

» Replication
Try to capture all sources of variability
(Biological versus technical variability)

» Blocking
Try to remove technical biases/confounding
(Lane and batch effects)

» Randomisation
Try to remove confounding due to other factors
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Experimental design
Sample size per condition

Sample size calculation:
Aim is to define the sample size allowing to detect an effect of a
given size at the « level with a given probability (power):
» 0, the effect size: function of uz and up
(log fold change, standardised difference),
» 1 — 3, the power,
» «, the type | error.
» ¢, nuisance parameters
(variability, sequencing depth, multiplicity correction)
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Statistical modelling

Statistical Hypotheses Sample/Sequencing /alignment

HO: ji, = p,
HI: o, # 11, —_—

1

Idea: Data: RNASeq counts
EGF is differentially expressed (DE) (A Vi, )
in luminal (L) and basal (B) cells (Vo Vaai i)
Inference Point estimation
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Statistical modelling

mﬁMmm y = [(X)+e

J
Ely] = f(X)

where
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» y denotes the (n x 1) vector of
expression intensities of a given gene,

» X denotes the (n x p) design/predictor matrix,
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» ¢ denotes the (n x 1) stochastic error vector,

gw » E[y] denotes the expectation of y
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Statistical modelling : Linear regression

y =X0+¢€

Ely] =X

where

o TR0 U
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» y denotes the (n x 1) vector of
expression intensities of a given gene,

» X denotes the (n x p) design/predictor matrix,

5o g g@') » (3 denotes the (p x 1) parameter vector,
LL =3 w - .
" " ] B » c~ N(0,0°) denotes the (n x 1) stochastic
= = 2 E error vector,
g. g § = » E[y] denotes the expectation of y




Statistical modelling : Linear regression

1|bizf|biz

o o o y=XB+e¢
oo, al®) E[Y] - X’B

a1]9: v
A a..|a,. (@] where
a,,a., | » y denotes the (n x 1) vector of

expression intensities of a given gene,
» X denotes the (n x p) design/predictor matrix,
Wikipedia » (3 denotes the (p x 1) parameter vector,
( P ) » ¢~ N(0,0%) denotes the (n x 1) stochastic
error vector,
» E[y] denotes the expectation of y



Statistical modelling : Strategy

Collect the information related to each sample for the predictors
of interest,

define 3, the sets of parameters we are interested in,

build the X matrix that relates

the sample information with the 3,

estimate the 3,

use statistical inference to assess significance (p-values).




Statistical modelling : Contrast matrices

Contrast matrices for models with
» one factor / categorical predictor,
> two experimental conditions (dichotomous predictor),
t-test
> several experimental conditions,
ANOVA
» two factors / categorical predictors,
> without interaction,
> with interaction,
Two-way ANOVA
» categorical and continuous factors.




Design matrix for models with
a two-level factor

R TR

Samplel Treatment A
Sample 2 Control
Sample 3 Treatment A
Sample 4 Control
Sample 5 Treatment A
Sample 6 Control

Number of samples: 6
Number of factors: 1 with 2 levels (Control and Treatment A)

Possible parameters (What differences are important)?

- Effect of Treatment A
- Effect of Control
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Sample1
Sample 2
Sample 3
Sample 4
sample 5
sample 6

Design matrix for models with
a two-level factor

Treatment A
Control
Treatment A
Control
Treatment A

Control

Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6

Treat. A

S1
S2
S3 | =
S4
S5
S6

e

X design Matrix

Control

T — B Parameter vector

C

C is the mean expression of the control

T is the mean expression of the treatment
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Design matrix for models with
a two-level factor

Different parameterisation: using intercept

), . . R
m Let’s now consider this parameterization:

lel Treat t A . .
SIS reatmen C= Baseline expression
Eambl2 Control T,= Baseline expression + effect of treatment
Sample 3 Treatment A
Sample 4 Control So the set of parameters are:
Sample 5 Treatment A .
C = Control (mean expression of the control)
Sample 6 Control

a =T,— Control (mean change in expression
under treatment

&




Design matrix for models with
a two-level factor

Different parameterization:
using an intercept

Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6

S1
S2
S3
S4
S5
S6

X design Matrix

Intercept

BB Parameter vector
B |«

a

Treatment A

The Intercept measures the baseline
expression and a measures now the
differential expression between Treatment A
and Control
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Design matrix for models with
a two-level factor

The two parameterizations are equivalent but
allows to test different contrasts/parameters

Contrast matrices allow us to

Contrast matrix estimate (and test) linear
combinations of our
coefficients.
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Design matrix for models with
a three-level factor

T T S

Samplel Treatment A
Sample 2 Treatment B
Sample 3 Control
Sample 4 Treatment A
Sample 5 Treatment B
Sample 6 Control

Number of samples: 6
Number of factors: 1 with 3 levels (Control, Treatment A, Treatment B)

Possible parameters (What differences are important)?

Effect of Treatment A

Effect of Treatment B

Effect of Control

Differences between treatments?
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Design matrix for models with
a three-level factor

S restment

Samplel
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6

Treatment A
Treatment B
Control

Treatment A
Treatment B

Control

Control = Baseline

Tp=Baseline +a
Tg=Baseline + b

S1
S2
S3
S4
S5
S6

S1
S2
S3
S4
S5
S6

a s S
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Design matrix for models with
a three-level factor

The model with intercept always take one level as a reference group:

The reference group here is
treatment A, the coefficients are

comparisons against it! B
0
\ Y

c By default, R uses the

Sl 10 0 first level as baseline
S2 110
S3|_|10 1
S4 100
S5 1 10
S6 1 0 1




Design matrix for models with
a three-level factor: R code

v

\Y%

Vo

V V V 3

one3levelfactor = data.frame(condition =

rep(c("TreatmentA", "TreatmentB", "Control"), 2))

model without intercept and default levels:
X1 = model.matrix(~ condition - 1, data = one3levelfactor)

model with intercept and default levels
X2 = model.matrix(~ condition, data = one3levelfactor)

model with intercept and self-defined levels
levels(one3levelfactor$condition)
levels(one3levelfactor$condition) = c("TreatmentB", "TreatmentA",
X3 = model.matrix(~ condition, data = one3levelfactor)

"Control")
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Design matrix for models with
a three-level factor: Exercise

Build contrast matrices for all pairwise comparisons for this design:

T, AA

T, A

B

C A

i ; C
S1 1 00
S2 010
S3(_(0 0 1
S4 1 00
S5 010
S6 0 0 1




Design matrix for models with
a three-level factor: Exercise

Build contrast matrices for all pairwise comparisons for these designs:

B R
a o
b a

sl 110 b

2 10 1

s3|_|100

S4 110

S5 111

S6 1 00




Models with 2 factors
[sample [ Treatment [ ERstatus |

Samplel Treatment A +
Sample 2 No Treatment +
Sample 3 Treatment A +
Sample 4 No Treatment +
Sample 5 Treatment A -
Sample 6 No Treatment -
Sample 7 Treatment A -
Sample 8 No Treatment -

Number of samples: 8
Number of factors: 2 two-level factors

> two2levelfactor = data.frame(treatment = rep(c("TreatA","NoTreat"),4),
er = rep(c("+","-"),each=4))
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Models with 2 factors: interactions

o st [ eata |

ER - S6, S8 S58577
ER + S2,54 S1,S3

Treat x ER negative
interaction

Treat x ER positive
interaction

Treat x
ER effects
Treat x
ER effects
Treat +
ER effects I

Treat Both

Both
effect  effects effect Treat  Bot

effect effects effect

(Adapted from Natalie Thorne, Nuno L. Barbosa Morais)
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Models with 2 factors: no interaction

X1 = model.matrix(~ treatment + er, data=two2levelfactor)

S2
S3
S4
S5
S6

S7

_Sl_

S8

By
a
er +
ot [Treata |
ER - S6, S8 S5, S7
ER + S2, 54 S1,S3




Models with 2 factors: with interaction

> X2 = model.matrix(~ treatment * er, data=two2levelfactor)
> X3 = model.matrix(~ treatment + er + treatment:er, data=two2levelfactor)

Y,
Y, i .
Y3 Interaction effect of
ﬁo Treatment A on ER+ samples
Y,
= a

¥ er+
Y6 a.er+
. | e+ |4 Y

7 ER - $6,58  S5,S7
YS ER + S2, 54 S1,S3
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Models with 2 factors: possible scenarios

2 factors:
» cell type (2 levels): luminal versus basal

» mouse type (3 levels): virgin, pregnant, lactating

Mean expression Level

3.0

2.5

2.0

1.0

0.5

0.0

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

PP
$ J j
o o —©— Basal _—t— TLuminal
vV P vV P L vV P 1 vV P vV P vV P 1
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Models with 2 predictors:
a factor and a continuous one

Sample 1 + 37
Sample 2 - 52
Sample 3 + 65
Sample 4 - 89
Sample 5 + 24
Sample 6 - 19
Sample 7 + 54
Sample 8 - 67

Number of samples: 8
2 predictors: ER (a two-level factor) and Dode (a continuous predictor)

> mixedpredictors = data.frame(er = rep(c("+","-"),4),
dose = ¢(37,52,65,89,24,19,54,67))
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Models with 2 predictors:

a factor and a continuous one

X = model.matrix(~ er + dose,

P s S S o S N T S

—_ e e e = e e

S = O = O = O =

37
52
65
89
24
19
54
67

data= mixedpredictors)

By

er+

If we consider the effect of dose
linear we use 1 coefficient (degree
of freedom). We can also model it
as non-linear (using splines, for
example).

I N
sample 1 + 37
Sample 2 - 52
Sample 3 + 65
Sample 4 - 89
sample 5 + 2
Sample 6 - 19
sample 7 + 54
Sample 8 - &




Model Estimation and inference
Y =X(+¢

/3 ——> Parameter of interest

/;) ——> Estimate of the parameter of interest

Se(ﬁA) ————> Standard Error of the estimator of the parameter of interest
[3’= X' X)'x"y MLE: [;’ =argmax{L(S1x)}

se([;’i) = 0'\/c_l. where c, is the i diagonal element of (XTX)_l

§=Xp

e=y _57 ——————> Residuals (observed errors)

Fitted values (predicted by the model)
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Examples of data with non-normal conditional distributions

Total time taken to consume

0 Number of students diagnosed Probability of myocardial infarction
a glass of wine with an infectious disease per day per treatment group
0.06 — Group1 —— Group 2 m
0.25 00
0.05 o
0.01 4 0.20
£ 0010
z 003 189 / 11034
0.02 o 0.10
0003 104 / 11037
0.01 o 00 H
o i
r T T T T T 1 000 R s s 0.000
0 10 20 30 40 50 60
RIS x x 00123 45 671 8 9 0w Aspirin Placebo
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Examples of data with non-normal conditional distributions

Total time taken to consume

0 Number of students diagnosed Probability of myocardial infarction
o a glass of wine with an infectious disease per day per treatment group
69 — Group 1 Group 2 m
025 0013
0.05 -
0.04 - 0.20
= 003 o1 189 / 11034
2 &
0.02 - 0.10
o008 104 / 11037
0.01 - 005 H
o il
! ! ! ! ! ! ! 0.00 003 00w
0 1020 30 40 50 60
RN X X 0128 45 6185 0u1 Aspirin Placebo

Linear model not suitable:
» Assumed model:
y = XB + € where € ~ N(U,(TQ),

> theoretical range of € = [—o00, +00],
> X8 not bounded to [0, oc] or [0, 1],
> Var[y] independent of Ely].

» Solution:
v|(X, B, ¢) ~ distribution(function(X3), ¢),

where distribution belongs to the exponential family and function is
33 monotonically increasing. D | s



GLM: conditional distributions

vI(X, B, ¢) ~ distribution(function(X3), ¢),

» Some possible conditional distributions :
statistical probability mass functions & density functions

> Within the exponential family ['classical’ GLM framework]

normal chi-squared Poisson Inverse Wishart
exponential beta Negative Binomial
gamma Dirichlet Bernoulli

Outside the exponential family [‘extended’ GLM framework]

Box-Cox power Gaussian Weibull

exponential inverse Gaussian Pareto type I, 11, 11l
exponential Gaussian logistic Poisson inverse Gaussian
generalized beta power exponential

generalized gamma reverse Gumbel

generalized inverse skew power exponential
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RESEARCH | INSTITUTE
iy




GLM: link functions

yv|(X, B, ¢) ~ distribution(function(X3), ¢),

» Most used link functions :
connection between y and X3

> to restrict f(X3) to belong to [0, ool:
> log link: f(z) =¢€*

— fle) =€




Distribution for count data: Poisson

Example:
Interest for the number of reads/counts for gene ‘X' for a sample basal cells of n mice
Sample of n mice: i=1 i=2 i=3 ... =115
Yi 607 873 1218 - -- 2715

If, during a time interval or in a given area,
» events occur independently,
» at the same rate,
» and the probability of an event to occur in a small interval (area) is
proportional to the length of the interval (size of the area),

then,
» a count occurring in a fixed time interval or in a given area, Y, may be
modelled by means of a Poisson distribution with parameter u:

Y ~ Poisson(u) where = E[Y] = Var[Y],

» the probability of observing = events during a fixed time interval or in a
given area is given by

e
y!

PY =ylp) =

36 :?‘bc/wcsw CAMBRIDGE
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Distribution for count data: Poisson vs Neg. Bin.

Exploration

Exploratory data analysis

scores between 0 and 1 = underdispersion (variance smaller than
mean)

Technical replicates Biological replicates

Variance

Mean Mean

data from Marioni et al. Gen Res 2008 data from Parikh et al. Genome Bio 2010

From D. Robinson and D. McCarthy

scores greater than 1 : overdispersion = adapted to biological

replicates
37 tod



Distribution for count data: Poisson vs Neg. Bin.

Differential analysis
Available tests

Models of count data

o Data transformation and gaussian-based model : limma -
voom

@ Poisson : TSPM

o Negative Binomial : edgeR, DESeq(2), NBPSeq, baySeq,
ShrinkSeq, ...

y

Statistical approaches

o Frequentist Approach : edgeR, DESeq(2), NBPSeq, TSPM, ...
@ Bayesian Approach : baySeq, ShrinkSeq, EBSeq, ...

@ Non-parametric approach : SAMSeq, NOISeq, ...




2a/ Negative binomial

» General form:

Yi ~ NB(pi, ¢)

T(y+3)

i

1

Ty; (Wilw, @) = F(é)F(er )

with expectation and variance given by

> E[Y;] = i = exp(x] B)
> Var[V:] = pi(1+ o)

(

14 dpi

) (

1+ b

)

1
¢




2b/ Negative binomial: Estimation

Differential analysis

Dispersion estimation with DESeq?2

Hypothesis : genes of similar average expression strength have
similar dispersion
@ Estimate gene-wise dispersion estimates using maximum
likelihood (ML) (black dots)
@ Fit a smooth curve (red line)
© Shrink the gene-wise dispersion estimates (empirical Bayes
approach) toward the values predicted by the curve to obtain
final dispersion values (blue arrow heads).

m

10 100

. MLE
« prior mean
MAP

3% ® e
'\
II‘ AR

&.:“ttf:‘

1
1

dispersion estimate
dispersion estimate

0.001 001 0.1

T T T T
1 100 10000 1 100 10000
mean of normalized counts mean of normalized counts




2b/ Negative binomial: Controlling for library size

» For a given gene, the variance of the Negative Binomial for the
1th sample is given by

Var(Y;) = pi(1 + opi)
» To control for the library size S; of the ith sample, DESeq2 uses

Var(Y;) = Sipi(1 + ¢Sipi)
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3/ Multiplicity correction

Multiple Testing

False positive (FP) : A non differentially expressed (DE) gene
which is declared DE.

For all 'genes’, we test Hy (gene i is not DE) vs H; (the gene is
DE) using a statistical test

Problem

Let assume all the G genes are not DE. Each test is realized at «

level
Ex : G = 10000 genes and v = 0.05 — E(FP) = 500 genes.




3/ Multiplicity correction

The Family Wise Error Rate (FWER)

Probability of having at least one Type | error (false positive), of
declaring DE at least one non DE gene.

FWER = P(FP < 1)

The Bonferroni procedure

| \

Either each test is realized at @ = o*/G level
or use of adjusted pvalue pBonf; = min(1, p; * G) and FWER < o*.
For G = 2000, < a* = 0.05, v = 2.5107°.

V.

Easy but conservative and not powerful.




3/ Multiplicity correction

Multiple testing

The False Discovery Rate (FDR)

Idea : Do not control the error rate but the proportion of error
= less conservative than control of the FWER.

Definition

The false discovery rate of [Benjamini and Hochberg, 1995] is the
expected proportion of Type | errors among the rejected hypotheses

FDR = E(FP/P) if P> 0and 0 if P =0

FDR < FWER




3/ Multiplicity correction

Standard assumption for p-value distribution

o level

true-positives §

U

10000

Frequency

ﬁ < true-negatives

o oD

Source : M. Guedj, Pharnext




3/ Multiplicity correction

Multiple testing

p-values histograms for diagnosis

Examples of expected overall distribution

"
|
|
|
|
|
|
|

Frequency

povalues

(a) : the most desirable shape
(b) : very low counts genes usually have large p-values

(c) : do not expect positive tests after correction




3/ Multiplicity correction

Multiple testing
p-values histograms for diagnosis

Examples of not expected overall distribution

WMWW ﬂwgiﬂﬂw

pvalues valuos p-values

(a) : indicates a batch effect (confounding hidden variables)

(b) : the test statistics may be inappropriate (due to strong
correlation structure for instance)

(c) : discrete distribution of p-values : unexpected




3/ Multiplicity correction

Multiple testing

Multiple testing : key points

@ Important to control for multiple tests
@ FDR or FWER depends on the cost associated to FN and FP

Controlling the FWER :

Having a great confidence on the DE elements (strong control).
Accepting to not detect some elements (lack of sensitivity < a few
DE elements)

Controlling the FDR :

Accepting a proportion of FP among DE elements. Very interesting
in exploratory study.

v




