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Genomic Data Integration

e Combining different biological layers to understand phenotypes
e Computational or Statistical approaches

Some examples:
1. TFdirect targets: TF ChIP-seq +
2. Enhancer-Promoter Interactions
o Chromosomal Conformation Capture (Hi-C) + Histone mark ChlIP-seq +

3. Impact of chromatin accessibility on transcription

o ATAC-seq + +DRIP-seq
4. Translational regulation
@ + Ribo-seq +
5. Epigenetic silencing: +

6. Regulatory elements: multiple Histone mark ChlP-seq



ldentifying direct targets of TFs



Network Biology: reverse engineer regulatory networks
by integrating TF binding and gene expression

Not all TF binding sites are transcriptionally active. The
collection of TF binding sites are called the Cistrome and the
collection of transcriptionally active targets (regulons) of a TF
is its Regulome.

Regulomes can be used to “explain” the phenotype under
consideration and understand aspects of biological systems.

Regulomes in combination with pathway and network
modelling approaches can then be used reverse engineer the
networks underlying phenotypes.

These networks provide information on connectivity,
information flow, and signaling, regulatory, metabolic and
other interactions between cellular components and
processes.
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TF Direct Target detection

Rcade (R-based analysis of ChIP-seq And Differential Expression)

Rcade is a Bioconductor package we (Cairns et al.) developed that utilizes
Bayesian methods to integrates TF binding ChlIP-seq, with transcriptomic
Differential Expression.

The method is “read-based” and independent of peak-calling, thus avoids
problems associated with peak-calling methods.

A key application of Rcade is in inferring the direct targets of a
transcription factor (TF).

These targets should exhibit TF binding activity, and their expression
levels should change in response to a perturbation of the TF.



Statistical approaches to data integration
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Rcade

* Rcade: R based analysis of ChIPseq And Differential Expression
* Bayesian approach used to integrate ChIP-seq with differential expression to identify
direct transcriptional targets of transcription factots.
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Rcade

Rcade integrates posterior probabilities of binding (determined via the baySeq package)
with those of differential expression (determined via the limma package).

PP
= log(z—>5)

Rcade uses a fully Bayesian modelling approach. In particular, it uses log-odds values (a
measure of probability), or B-values, in both its input and output. The log-odds value is
related to the posterior probability (PP) of an event, as per the formula above.

Priors need to be defined.

A number of output files are generated by Rcade. Usually, the file of interest is
“DEandChlP.csv”, which contains a list of genes most likely to have both DE and ChIP
signals ranked by their B-value.

More on Rcade @ the practical!



Beta

e Three main functionalities:
o to predict whether a factor has activating or repressive function
o toinfer the factor’s target genes
o toidentify the binding motif of the factor and its collaborators

| Expression data Binding data I

—

: = Stage 1: activation and
I PGS Ko I '''' l repression prediction I """ = | Repression I
Upregulate targets l Stage 2: direct targets Downregulate targets
and associated prediction and associated
peaks peaks
/_\
UP motifs | | Stage 3: motif analysis I I DOWN motifs

\

Wang, 2013 Nat Protoc. 2013

/

|Differential motifsl




Cistrome GO
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TP53 direct targets
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ldentifying TP53 direct targets
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KEGG: p53 signalling pathway

P53 SIGNALING PATHWAY
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Molecular Cartography of TF regulat
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Fine tuning regulation: post-translational modifications

Apoptosis
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Apoptosis =
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Epigenetics and Epigenomics

e Epigenetics encompasse processes that lead to heritable change in gene
expression without changes to the DNA itself.

e DNA is packaged into chromatin. This nucleoprotein structure is highly
dynamic and important for gene regulation. Chromatin states can vary
between conditions, cells and tissue types and even within a single
chromosome.

e The Epigenome refers to these chromatin states at a whole genome level. A
multicellular organism has a single genome but many epigenomes.

o Paradox: Although overall rates of cardiovascular disease increase with
rising national prosperity, the least prosperous residents of a wealthy
nation suffer the highest rates.



Developmental origin of health and disease

The dutch famine (“Hongerwinter”) 1944-45 in German occupied Netherlands
towards the end of the WWII affected 4.5 million people and led to ~22000 deaths.
“People ate grass and tulip bulbs, and burned every scrap of furniture they could get
their hands on, in a desperate effort to stay alive.”

The Dutch Hunger Winter study, from which results were first published in 1976,
provides an almost perfectly designed, although tragic, human experiment in the
effects of intrauterine deprivation on subsequent adult health.

Critical windows during development where epigenetic modification will affect adult
health.

Those exposed during early gestation experienced elevated rates of obesity, altered
lipid profiles, and cardiovascular disease. In contrast, markers of reduced renal
function were specific to those exposed in mid-pregnancy. Those who were exposed
to the famine only during late gestation were born small and continued to be small
throughout their lives, with lower rates of obesity as adults than in those born
before and after the famine. Schulz, PNAS 2010



Large-scale epigenomic studies

Histone and TF ChIP-seq,
Transcriptomics, Hi-C

Epigenomes of 100 blood cell
types

e . Stem cells, fetal tissues, adult

PROJECT
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Deutsches Epigenom Programm

Various human, mouse tissues



Current model of chromatin organization
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Histone Modifications

® Nucleosomes consist of 2x i
H2A/H2B and 2x H3/H4 o
histones.

e 80 known covalent
modifications

H3 | Histone 3
K | Residue is lysine, K
4 | 4t residue.
me3 | Trimethylation
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Acetylation Deimination
@ Methylation € Ubiquitination
© Phosphorylation

The most common histone modifications



Histone Modifications

Some examples:

H3K4me3 - active promoters
High H3K4mel and H3k27Ac, low H3K4me3 - active enhancers
H3K27me3 -repression at promoters

H3K9me3 - Heterochromatin (inactive, condensed chromatin)

More information at:
http://epigenie.com/key-epigenetic-players/histone-proteins-and-modifications

/[



http://epigenie.com/key-epigenetic-players/histone-proteins-and-modifications/
http://epigenie.com/key-epigenetic-players/histone-proteins-and-modifications/

Epigenetic Readers, Writers and Erasers

Epigenetic
eraser

Writers
e.g., HATs, HMTs
or PRMTs
Erasers
e.g., HDACs
and KDMs

* Transcriptional activation
or repression

* Changes in DNA replication
* Changes in DNA damage (\

repair

Epigenetic
reader

Epigenetic
writer

Readers

e.g., bromodomains,
chromodomains
and Tudor domains

Nature Reviews | Drug Discovery

Falkenberg and Jonstone, Nature Reviews Drug Discovery, 2014



Combinations of marks can have different effects
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To understand the entire code need to ChIP-seq each mark. This
information has to be integrated and simplified.



Simplifying histone marks

Unsupervised learning methods for segmentation,;

e ChromHMM (Ernst et al., 2011) iy |
e Segway (Hoffman et al., 2012 : .
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Chromatin Segmentation Algorithms

Genome divided into 200bp bins

Adjust read position (shift 5 of each read 5’->3’ by 0.5 the fragment length)
Count reads in each bin for each mark and generate count matrix

HMM with specified states is used to model the count matrices and derive

segmentation
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Chromatin Segmentation

Advantages:

e Derived states, not vectors of chromatin marks -easier to determine
genome wide properties.
e (Can train on one set and apply to another.

Disadvantages:

e How many states?
® Histone states binary -lose information (except in EpiCSeq)
e Causality unknown



State (user order)

Chromatin Colours

Emission parameters

Candidate
state annotation
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3|
a4 Strong enhancer
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6 Weak/poised enhancer
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8
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Visualizing Chromatin Marks

UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)
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