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Important!!!

e Good Experimental Design

e Optimize Conditions (Cells, Antibodies, Sonication etc.)

* Biological Replicates (at least 3)!!
o sample biological variation & improve signal to noise ratio
o capture the desired effect size

o statistical power to test null hypothesis

e ChIP-seq controls — Knockout, Input (Try not to use 1gG)



What is ChIP Sequencing?

® Combination of chromatin immunoprecipitation (ChIP) with ultra
high-throughput massively parallel sequencing. The typical ChlIP assay
usually take 4-5 days, and require approx. 10°~ 107 cells.

Allows mapping of Protein—DNA interactions or chromatin modifications
in vivo on a genome scale.

® Enables investigation of
o Transcription Factor binding
o DNA binding proteins (HP1, Lamins, HMGA etc)
o RNA Pol-Il occupancy
o Histone modification marks

eSingle cell ChiIP-seq is possible (Rotem et al, 2015 Nat. Biotech.)
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Advances in technologies for nucleic acid-protein
interaction detection

e ChIP-chip : combines ChIP with microarray
technology.
e ChIP-PET : ChIP with paired end tag sequencing

e ChlP-exo : ChlP-seq with exonuclease digestion
e CLIP-seq / HITS-CLIP/ iCLIP : cross-linking immunoprecipitation high
throughput sequencing for RNA-Protein binding

e ATAC-seq : Assay for Transposon Accessible Chromatin

eSono-seq : Sonication of cross linked chromatin sequencing.

eHi-C: High throughput long distance chromatin interactions
eDRIP-seq: R-loop (DNA-RNA) interaction detection



DNA-Protein Interactions
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Statistical aspects and best practices

These guidelines address :

Antibody validation (IP specificity and quality)
Experimental replication and controls
Biological replicates

Sequencing depth

Data quality assessment

Data and metadata reporting

Experimental guidelines:
Landt et al., “ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.” Genome Res. 2012.
Marinov et al., “Large-scale quality analysis of published ChIP-seq data.” 2014 G3

Rozowsky et al., "PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls" Nat
Biotechnol. 2009

Statistical aspects:
Cairns et al., “Statistical Aspects of ChIP-Seq Analysis.” Adv. in Stat Bioinf., 2013.
Carroll TS et al., “Impact of artifact removal on ChlIP quality metrics in ChIP-seq and ChlP-exo data.” Front Genet.

2014

Bailey et al., "Practical guidelines for the comprehensive analysis of ChIP-seq data.” PLoS Comput Biol. 2013.
Sims et al., “Sequencing depth and coverage: key considerations in genomic analyses.” Nat. Rev. Genet. 2014.



Sequencing depth for ChIP-seq

More prominent peaks are identified with fewer reads, versus weaker peaks that

Number of putative target regions continues to increase significantly as a function

[
require greater depth
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Why we need input controls
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(a) Fragment density signal tracks for Pol 1l and the input-DNA control as well as the target regions that are identified (significantly enriched) as a function of the number
of mapped sequence reads. The same numbers of sequence reads are used for both sample and control. More prominent peaks are identified with fewer reads,
whereas weaker peaks require greater depth. (b) Similar plot with STAT1 and matching interferon-v¥—stimulated HeLa input-DNA control. (¢) The number of putative
Pol Il (blue line) and STAT1 (red line) targets identified and the fraction for each of these that are enriched relative to input DNA as a function of the number of mapped
sequence reads. Although the number of putative targets continues to increase for both Pol Il and STAT1, the number of enriched targets begins to plateau. The number
of Pol Il targets appears to saturate faster than for STAT1 targets. (d) Summarized results of analyzing 9 million mapped Pol Il ChIP-seq sequence reads using one, two
or three biological replicates. We calculate sensitivity and positive predictive values using the targets identified with all the available sequence reads (~29 million
uniquely mapped reads) as gold standard positives and the remainder as negatives. Only a marginal gain in positive predictive value at the cost of sensitivity is gained
by using three biological replicates instead of two biological replicates.



Artefact removal 1: Decoy and Sponge databases

e The decoy contains human sequences missing from the hg19 reference,
mitochondrial sequences and viral sequences integrated into the human
genome. blog article on decoys

e The sponge contains ribosomal and mitochondrial sequences,
non-centromeric Huref sequences absent in GRCh38 (hg38), centromeric
models etc (Miga et al., 2015).

® These mop up ambiguous sequences, resulting in more accurate and faster
alignment.

Nucleic Acids Research

Nucleic Acids Res. 2015 Nov 16; 43(20): e133. PMCID: PMC4787761
Published online 2015 Jul 10. doi: 10.1093/nar/gkv671

Utilizing mapping targets of sequences underrepresented in the
reference assembly to reduce false positive alignments

Karen H. Migg,* Christopher Eisenhart, and W. James Kent



http://www.cureffi.org/2013/02/01/the-decoy-genome/

Artefact removal 2: Blacklisted regions

eOnce reads have been aligned to the reference genome, “blacklisted
regions” are removed from BAM files before peak calling.

eBlacklisted regions are genomic regions with anomalous, unstructured,
high signal or read counts in NGS experiments, independent of cell type or
experiment.

*These regions tend to have a very high ratio of multi-mapping to unique
mapping reads and a high variance of mappability and simple mappability
filters do not account for them.

eThese regions are often found at repetitive regions (Centromeres,
Telomeres, Satellite repeats) and are troublesome for high throughput

sequencing aligners and when computing genome wide correlations.

eThese regions also confuse peak callers and result in spurious signal.



Artefact removal 3

e The DAC Blacklisted Regions aim to identify a comprehensive set of regions
in the human genome that have anomalous, unstructured, high signal/read
counts in NGS experiments, independent of cell line and type of experiment.
The Duke Excluded Regions contains problematic regions for short sequence
tag signal detection (such as satellites and rRNA genes).

80 open chromatin tracks (DNase and FAIRE data-sets) and 20 ChlP-seq
input/control tracks spanning ~60 human tissue types/cell lines in total used
to identify these regions with signal artefacts. The DAC Blacklisted
Regions track was generated for the ENCODE project.

e Where to get Blacklist BED file:
e https://sites.google.com/site/anshulkundaje/projects/blacklists

e How they were generated:
e https://docs.google.com/file/d/0B26FxqAtrFDWWGFCAXE1SIFYRmM/edit


https://docs.google.com/file/d/0B26FxqAtrFDwWGFCdXE1SlFYRmM/edit

Artefact removal 4: Grey Lists

eGrey Lists represent regions of high artefact signals that are specific to
cell-lines or tumour samples, and can be tuned depending on the stringency
required.

e GreyListChIP package can identify those spurious regions, so that reads in
those regions can be removed prior to peak calling, allowing for more
accurate insert size estimation and reducing the number of false-positive
peaks.



Peak Calling
e |dentifies TF binding sites or regions of histone modification.
e Count based - Define regions. Count the number of reads falling into each

region. When a region contains a statistically significant number of reads, call
that region a peak.

e Shape based - Consider individual candidate binding sites. Model the spatial
distribution of reads in surrounding regions, and call a peak when the read
distribution conforms to the expected distribution near a binding site.
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