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Why study single cells?

Innate-lymphoid cells
Bjorklund et al., Nature Immunology (2016)

Whole C. elegans larva
Cao et al., Science (2017)

Unravel tissue heterogeneity:
  Novel and rare cell types
  Unknown cellular states

Transcriptional dynamics

Can also measure single-cell:
  Chromatin accessibility
  Mutation & CNV (scDNA-

seq)
  Methylation

Mouse hippocampus
Shah et al., Neuron (2017)



How can we study single cells?
Technology	 Measurements	(P)	 Cells	(N)	 Throughput	 Pro	 Con	

Flow	cytometry	 1-15	 1k-100k	 big	N,	small	P	 Technically	easy	 Limited	targets	

Mass	cytometry	 20-50	 1k-100k	 big	N,	medium	P	 >P	than	flow	 Limited	targets	

RNA	FISH	 1	 ~100	 small	N,	small	P	 SpaJal	
resoluJon	

Technically	hard,	
low	throughput	

MulJplex	FISH	 ~100	 100’s	 medium	N,	medium	P	 SpaJal	
resoluJon	

Technically	and	
analyJcally	hard	

SS2	scRNA-seq	 ~20,000	 100-1000	 medium	N,	big	P	 High	
throughput	

Sparse,	low	input	
material	

Droplet	scRNA-seq	 ~20,000	 100-1M	 big	N,	big	P	 High	
throughput	

Very	sparse,	low	
input	material	

NB	–	every	method	has	it’s	pros	and	cons.		There	is	no	all-encompassing	single	cell	
methodology.	

It	depends	on	your	
biological	quesJon!	



A typical scRNA-seq experiment

Image courtesy of Aaron Lun

  Dissociation can be easy (blood) or hard (collagenous tissue)
  Separation and RT differ by protocol



Physical separation defines main 
scRNA-seq protocols
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Images courtesy of Aaron Lun

  96 or 800 well format
  Physically check 

presence of cells
  High capture efficiency
  Doublet issues
  Expensive
  Full-length cDNA 

(SMART-seq{2})
  Spike-in control RNA
  High gene coverage

  96 or 384 well format
  Sort specific 

population(s) of cells
  High capture efficiency
  Experimental design 

considerations
  Full-length cDNA 

(SMART-seq(2) or end-
tagging; UMIs)

  Spike-in control RNA
  High gene coverage

  100-1000’s of cells
  Doublet issues
  Variable capture 

efficiency
  Low per-cell cost
  3’ end tag; UMIs
  No spike-in control RNA
  High cell coverage



What are UMIs?
Unique molecular identifiers give (almost) exact molecule 
counts in sequencing experiments.

They reduce the amplification noise by allowing (almost) 
complete de-duplication of sequenced fragments.



A typical SMART-seq workflow

The same tools used for bulk RNA-seq, e.g. FastQC, Star, PicardTools
(Deduplication is essential)

Typically 1 library per cell, potentially many 100’s of FASTQ files
Need to be able to handle many files in parallel – e.g. high performance computing 
cluster.

Pipelining tools exist (beyond the scope of this tutorial – see resources).



A typical SMART-seq workflow

The same tools used for bulk RNA-seq, e.g. FastQC, Star, PicardTools
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Single-cell specific tools (generally performed in R; Practical 1)



A typical SMART-seq workflow

The same tools used for bulk RNA-seq, e.g. FastQC, Star, PicardTools
(Deduplication is essential)

Single-cell specific tools (generally performed in R; Practical 1)

Covered in 
part 2

DE testing can use the 
same tools as bulk, with 
a few adjustments



A typical droplet workflow
Droplet-based methods create a new problem, and 
solution:
 Many 100’s-1000’s cells == 1000’s small FASTQ files
  Prohibitively expensive to sequence 20,000 cells to 
1M reads

Solution: multiplex cells using barcodes

10X Genomics Chromium v1 chemistry design
Zheng et al., Nature Comms (2017)

A single 10X Genomics 
Chromium library 
generates 3 FASTQ files:
R1, R2, Index



A typical droplet workflow

Generally run in a single pipeline, e.g. Cellranger (10X specific), DropSeq 
(Macosko et al.) or custom (not recommended if just starting).

Sequencing errors in cell barcodes and UMIs are a source of technical noise – 
must be dealt with

Recent development: Rob Patro & co have a new end-to-end (i.e. FASTQ to counts matrix) lightweight 
pipeline: 
https://salmon.readthedocs.io/en/latest/alevin.html
	



A typical droplet workflow

Generally run in a single pipeline, e.g. Cellranger (10X specific), DropSeq 
(Macosko et al.) or custom (not recommended if just starting).

Single-cell specific tools (generally performed in R; Practical 1)



Dealing with single cells

Regardless of technology, our goal is to 
derive/extract real biology from technically 

noisy data.



Single cell analysis workflow

Starting with a counts matrix:
  Quality control
  Normalization
  Batch correction [if required]
  Dimensionality reduction and visualisation (part 2)
  Clustering (part 2)
  Differential expression testing (same as bulk RNA seq… 
mostly)



Quality control on cells

 Low sequencing depth
 Low numbers of expressed genes (i.e. any non-
zero count)
 High spike-in (if present) or mitochondial content

Image courtesy of Aaron Lun



Normalization

  The aim is bring all cells onto 
the same distribution to remove 
biases between them
  We want to preserve biological 

variability, not introduce new 
technical variation
  Primary source of bias is 

sequencing depth – scale down 
counts accordingly
  Need a method that is robust to 

sparsity and composition bias
  TMM & DESeq size factors are 
not!

Image courtesy of Aaron Lun



Normalization by deconvolution

  Estimate cell-specific size factors.
  Handles sparsity and is robust to DE.

Image courtesy of Aaron Lun

Lun et al., Genome Biology (2016)

1.  Cluster cells together
2.  Pool cells to increase counts, 

reduce 0’s
3.  Robust estimate of each pool 

size factor
4.  Wash & repeat for multiple 

pools
5.  Solve the linear system of 

equations to obtain per-cell 
size factors



Confounders and batch correction

  A segue into proper experimental design
  Some batch effects cannot be avoided
  Some can, make sure you know which is which

Adapted from Hicks et al., bioRxiv (2015)

Please	don’t	design	your	
experiment	like	this!!!	



What if I still have batch effects?

Good experimental design doesn’t remove 
batch effects, it prevents them from biasing 

your results (hopefully)

If you still have batch effects then they can 
be dealt with (if necessary) <- important for 
clustering and visualization



Simple batch correction

If you have a single cell type and multiple 
conditions:

Use a linear model to regress gene 
expression on batch



More complex batch correction
Linear models (and bulk batch correction methods) can’t handle composition differences between batches.

Need a method that handles multiple batches, i.e. > 2, and corrects expression values properly

Match cells between batches that share the same biological subspace, remove the orthogonal components 
(mnnCorrect). 

Haghverdi et al., Nature Biotech (2018)



Resources

Single Cell Resources:
Single cell course (Hemberg Lab; Wellcome Sanger Institute):
http://hemberg-lab.github.io/scRNA.seq.course/index.html

Aaron Lun’s single cell workflow (very detailed):
https://www.bioconductor.org/packages/release/workflows/html/simpleSingleCell.html

Cellranger pipeline:
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-
ranger



Resources

Workflow Resources:
Snakemake (Python):
http://snakemake.readthedocs.io/en/stable/#

Nextflow (Java/agnostic):
https://www.nextflow.io

Ruffus (Python):
http://www.ruffus.org.uk

make (bash):
https://www.tutorialspoint.com/unix_commands/make.htm



Recommended reading

Study design
Hicks et al., bioRxiv (2015):
https://www.biorxiv.org/content/biorxiv/early/
2015/08/25/025528.full.pdf

Batch correction:
Haghverdi et al, Nature Biotech (2018):
https://www.nature.com/articles/nbt.4091

Butler et al., Nature Biotech (2018):
https://www.nature.com/articles/nbt.4096


