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Outline	

•  Experimental	Design	
•  Design	and	Contrast	matrices	
•  Generalized	linear	models	
•  Models	for	coun:ng	data	
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To consult the statistician after an 
experiment is finished is often merely 
to ask him to conduct a post mortem 
examination. He can perhaps say 
what the experiment died of. 

Sir	Ronald	Fisher	(1890-1962)	

[evolu:onary	biologist,	gene:cist	and	sta:s:cian]	
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An approximate answer to the right 
problem is worth a good deal more 
than an exact answer 
to an approximate problem.  

John	Tukey (1915-2000)	

[Sta:s:cian]	
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An unsophisticated forecaster uses 
statistics as a drunken man uses 
lamp-posts - for support 
rather than for illumination. 

Andrew	Lang	(1844-1912)	

[Poet,	novelist	and	literary	cri:c]	



Experimental	Design	



Design	of	an	experiment	

•  Select	biological	ques:ons	of	interest	
•  Iden:fy	an	appropriate	measure	to	answer	
that	ques:on	

•  Select	addi:onal	variables	or	factors	that	can	
have	an	influence	in	the	result	of	the	
experiment	

•  Select	a	sample	size	and	the	sample	units	
•  Assign	samples	to	lanes/flow	cells.	
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Principles	of	Sta:s:cal	Design	of	
Experiments	

•  R.	A.	Fisher:	
– Replica:on	
– Blocking	
– Randomiza:on.	

•  They	have	been	used	in	microarray	studies	
from	the	beginning.	

•  Bar	coding	makes	easy	to	adapt	them	to	NGS	
studies.	

8



Unreplicated	Data	

Inferences	for	RNA	and	fragment-level	can	be	
obtained	through	Fisher’s	test.	But	they	don’t	
reflect	biological	variability.	

Auer and Doerge. Genetics 185:405-416(2010)
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Replicated	Data	

Inferences	for	treatment	effect	
using	generalized	linear	models	
(more	on	this	later).	

Auer and Doerge. Genetics 185:405-416(2010)
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Is	this	a	good	design?	
We	should	
randomize	within	
block!	



Balanced	Block	Designs	

•  Avoids	confounding	effects:	
– Lane	effects	(any	errors	from	the	point	where	the	
sample	is	input	to	the	flow	cell	un:l	the	data	
output).	Examples:	systema:cally	bad	sequencing	
cycles,	errors	in	base	calling…		

– Batch	effects	(any	errors	afer	random	
fragmenta:on	of	the	RNA	un:l	it	is	input	to	the	
flow	cell).	Examples:	PCR	amplifica:on,	reverse	
transcrip:on	ar:facts…	

– Other	effects	non	related	to	treatment.	

Auer and Doerge. Genetics 185:405-416(2010)
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Balanced	blocks	by	mul:plexing	

Auer and Doerge. Genetics 185:405-416(2010)



Benefits	of	a	proper	design	

•  NGS	is	benefited	with	design	principles	
•  Technical	replicates	can	not	replace	biological	
replicates	

•  It	is	possible	to	avoid	mul:plexing	with	
enough	biological	replicates	and	sequencing	
lanes	

•  The	advantages	of	mul:plexing	are	bigger	
than	the	disadvantages	(cost,	loss	of	
sequencing	depth,	bar-code	bias…)	
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Design	and	contrast	
matrices	



Sta:s:cal	models	
– We want to model the expected result of an 

outcome (dependent variable) under given 
values of other variables (independent 
variables)

E(Y ) = f (X)
Y = f (X)+ε

Expected value of variable Y

Arbitrary function (any shape)

A set of k 
independent variables 
(also called factors)

This is the 
variability around 
the expected 
mean of y
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Design	matrix	

– Represents the independent variables that have 
an influence in the response variable, but also 
the way we have coded the information and 
the design of the experiment.

–  For now, let’s restrict to models 

Y = βX +ε

Response variable Parameter vector

Design matrix

Stochastic error



Types	of	designs	considered	

•  Models	with	1	factor	
– Models	with	two	treatments	
– Models	with	several	treatments	

•  Models	with	2	factors	
–  Interac:ons	

•  Paired	designs	
•  Models	with	categorical	and	con:nuous	factors	
•  TimeCourse	Experiments	
•  Mul:factorial	models.	
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Strategy	

•  Define	our	set	of	samples	
•  Define	the	factors,	type	of	factors	(con:nuous,	
categorical),	number	of	levels…	

•  Define	the	set	of	parameters:	the	effects	we	want	to	
es:mate	

•  Build	the	design	matrix,	that	relates	the	informa:on	
that	each	sample	contains	about	the	parameters.	

•  Es:mate	the	parameters	of	the	model:	tes:ng	
•  Further	es:ma:on	(and	tes:ng):	contrast	matrices.	



Models	with	1	factor,	2	levels	

	
	

Treatme	Sample	 Treatment	

Sample1	 Treatment	A	

Sample	2	 Control	

Sample	3	 Treatment	A	

Sample	4	 Control	

Sample	5	 Treatment	A	

Sample	6	 Control	

Number	of	samples:	6	
Number	of	factors:	1	

	Treatment:	Number	of	levels:	2	

Possible	parameters	(What	differences	are	important)?	
	
-  Effect	of	Treatment	A	
-  Effect	of	Control	 19



Design	matrix	for	models	with	1	factor,	2	
levels	

	
	

Design	Matrix	
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Equivalent	to	a	t-test	

Sample	 Treatment	

Sample1	 Treatment	A	

Sample	2	 Control	

Sample	3	 Treatment	A	

Sample	4	 Control	

Sample	5	 Treatment	A	

Sample	6	 Control	

C	is	the	mean	expression	of	the	control	
T	is	the	mean	expression	of	the	treatment	



Design	matrix	for	models	with	1	factor,	2	
levels	

	
	

Design	Matrix	
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Equivalent	to	a	t-test	

Sample	 Treatment	

Sample1	 Treatment	A	

Sample	2	 Control	

Sample	3	 Treatment	A	

Sample	4	 Control	

Sample	5	 Treatment	A	

Sample	6	 Control	



Intercepts	

	
	

Different	parameteriza:on:	using	intercept	

22

Sample	 Treatment	

Sample1	 Treatment	A	

Sample	2	 Control	

Sample	3	 Treatment	A	

Sample	4	 Control	

Sample	5	 Treatment	A	

Sample	6	 Control	

Let’s	now	consider	this	parameteriza:on:	
	
C=	Baseline	expression	
TA=	Baseline	expression	+	effect	of	treatment	
	
So	the	set	of	parameters	are:	
	
C	=	Control	(mean	expression	of	the	control)	
a	=	TA	–	Control	(mean	change	in	expression	
under	treatment	



Intercept	

	
	

Design	Matrix	
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Different	parameteriza:on:	using	intercept	

Intercept	measures	the	
baseline	expression.	
a	measures	now	the	
differen:al	expression	
between	Treatment	A	and	
Control	
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Contrast	matrices	
Are	the	two	parameteriza:ons	equivalent?	

Contrast	matrix	
Contrast	matrices	allow	us	to	
es:mate	(and	test)	linear	
combina:ons	of	our	
coefficients.		
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Models	with	1	factor,	more	than	2	levels	

	
	

Treatme	Sample	 Treatment	

Sample1	 Treatment	A	

Sample	2	 Treatment	B	

Sample	3	 Control	

Sample	4	 Treatment	A	

Sample	5	 Treatment	B	

Sample	6	 Control	

Number	of	samples:	6	
Number	of	factors:	1	

	Treatment:	Number	of	levels:	3	
Possible	parameters	(What	differences	are	important)?	
-  Effect	of	Treatment	A	
-  Effect	of	Treatment	B	
-  Effect	of	Control	
-  Differences	between	treatments?	
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ANOVA	models	



Design	matrix	for	ANOVA	models	
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Sample	 Treatment	

Sample1	 Treatment	A	

Sample	2	 Treatment	B	

Sample	3	 Control	

Sample	4	 Treatment	A	

Sample	5	 Treatment	B	

Sample	6	 Control	



Design	matrix	for	ANOVA	models	
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Sample	 Treatment	

Sample1	 Treatment	A	

Sample	2	 Treatment	B	

Sample	3	 Control	

Sample	4	 Treatment	A	

Sample	5	 Treatment	B	

Sample	6	 Control	

Control	=	Baseline	
TA	=	Baseline	+	a	
TB	=	Baseline	+	b	



Baseline	levels	
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The	model	with	intercept	always	take	one	level	as	a	baseline:	

The	baseline	is	treatment	A,	the	
coefficients	are	comparisons	
against	it!		
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By	default,	R	uses	the	
first	level	as	baseline	



R	code	

R	code:		
> Treatment <- rep(c(“TreatmentA”, “TreatmentB”, “Control”), 2)
> design.matrix <- model.matrix(~ Treatment)  (model with intercept)
> design.matrix <- model.matrix(~ -1 + Treatment)  (model without intercept)
> design.matrix <- model.matrix(~ 0 + Treatment)  (model without intercept)
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Exercise	

Build	contrast	matrices	for	all	pairwise	comparisons	for	this	design:	
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Exercise	

Build	contrast	matrices	for	all	pairwise	comparisons	for	these	designs:	
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Exercise	

Build	contrast	matrices	for	all	pairwise	comparisons	for	these	designs:	
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Exercise	

Build	contrast	matrices	for	all	pairwise	comparisons	for	these	designs:	
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Models	with	2	factors	

	
	

Treatme	Sample	 Treatment	 ER	status	

Sample1	 Treatment	A	 +	

Sample	2	 No	Treatment	 +	

Sample	3	 Treatment	A	 +	

Sample	4	 No	Treatment	 +	

Sample	5	 Treatment	A	 -	

Sample	6	 No	Treatment	 -	

Sample	7	 Treatment	A	 -	

Sample	8	 No	Treatment	 -	
Number	of	samples:	8	
Number	of	factors:	2	

	Treatment:	Number	of	levels:	2	
	ER:	Number	of	levels:	2	

34



Adapted from Natalie Thorne, Nuno L. Barbosa Morais

Treat 
effect

Both 
effects

ER 
effect

Treat  x ER positive 
interaction

Treat x ER negative 
interaction

Understanding	Interac:ons	

Treat + 
ER effects

Treat 
effect

Both 
effects

ER 
effect

Treat x 
ER effects

Treat x 
ER effects

No	Treat	 Treat	A	

ER	-		 S6,	S8	 S5,	S7	

ER	+	 S2,	S4	 S1,	S3	
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Models	with	2	factors	and	no	interac:on	

	
Number	of	coefficients	(parameters):		
Intercept	+	(♯levels	Treat	-1)	+	(♯levels	ER	-1)	=	3	
	
If	we	remove	the	intercept,	the	addi:onal	
parameter	comes	from	the	missing	level	in	one	of	
the	variables,	but	in	models	with	more	than	1	factor	
it	is	a	good	idea	to	keep	the	intercept.	

Model	with	no	interac:on:	only	main	effects	
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Models	with	2	factors	(no	interac:on)	
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R	code:	>	design.matrix <- model.matrix(~Treatment+ER) 	(model	with	intercept)	
											 	 		

In	R,	the	baseline	for	each	
variable	is	the	first	level.		
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No	Treat	 Treat	A	

ER	-		 S6,	S8	 S5,	S7	

ER	+	 S2,	S4	 S1,	S3	



Models	with	2	factors	(no	interac:on)	
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No	Treat	 Treat	A	

ER	-		 S6,	S8	 S5,	S7	

ER	+	 S2,	S4	 S1,	S3	

R	code:	>	design.matrix <- model.matrix(~Treatment+ER) 	(model	with	intercept)	
											 	 		



Models	with	2	factors	and	interac:on	

	
Number	of	coefficients	(parameters):		
Intercept	+	(♯levels	Treat	-1)	+	(♯levels	ER	-1)	+
((♯levels	Treat	-1)	*	(♯levels	ER	-1))			=	4	
	

Model	with	interac:on:	main	effects	+	interac/on	
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Models	with	2	factors	(interac:on)	
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R	code:	> design.matrix <- model.matrix(~Treatment*ER)		(model	with	intercept)	
											 	 		

“Extra	effect”	of	Treatment	A	on	
ER+	samples	
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No	Treat	 Treat	A	

ER	-		 S6,	S8	 S5,	S7	

ER	+	 S2,	S4	 S1,	S3	



Models	with	2	factors	(interac:on)	
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“Extra	effect”	of	Treatment	A	on	
ER+	samples	
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R	code:	> design.matrix <- model.matrix(~Treatment*ER)		(model	with	intercept)	
											 	 		

No	Treat	 Treat	A	

ER	-		 S6,	S8	 S5,	S7	

ER	+	 S2,	S4	 S1,	S3	



2	by	3	factorial	experiment	

•  Identify DE genes that have different time profiles 
between different mutants.
α = time effect,   β = strains,    αβ = interaction effect

0            12         24

Strain B
Strain A

time 

α  > 0 
β  = 0 
αβ=0 

Exp 

0            12         24

Strain B

Strain A

time 

α > 0 
β > 0 
αβ=0 

Exp 

0            12         24

Strain A
Strain B

time 

αβ>0 
Exp 

0            12         24 time 

Strain A

Strain B

α=0 
β> 0 
αβ=0 

Exp 

Slide by Natalie Thorne, Nuno L. Barbosa Morais
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Paired	Designs	
Sample	 Type	

Sample	1	 Tumour	

Sample	2	 Matched	Normal	

Sample	3	 Tumour	

Sample	4	 Matched	Normal	

Sample	5	 Tumour	

Sample	6		 Matched	Normal	

Sample	7	 Tumour	

Sample	8	 Matched	Normal	

Number	of	samples:	4	
Number	of	factors:	2	

	Sample:	Number	of	levels:	4	
	Type:	Number	of	levels:	2	

Number	of	samples:	8	
Number	of	factors:	1	

	Type:	Number	of	levels:	2	

Sample	 Type	

Sample	1	 Tumour	

Sample	1	 Matched	Normal	

Sample	2	 Tumour	

Sample	2	 Matched	Normal	

Sample	3	 Tumour	

Sample	3		 Matched	Normal	

Sample	4	 Tumour	

Sample	4	 Matched	Normal	
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Design	matrix	for	Paired	experiments	
We can gain precision in our estimates with a paired design, 
because individual variability is removed when we compare 
the effect of the treatment within the same sample.

R code: > design.matrix <- model.matrix(~Type)  (unpaired)

     > design.matrix <- model.matrix(~Sample+Type)  (paired)
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These effects only 
reflect biological 
differences not 
related to tumour/
normal effect.
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Sample	 Type	

Sample	1	 Tumour	

Sample	1	 Matched	Normal	

Sample	2	 Tumour	

Sample	2	 Matched	Normal	

Sample	3	 Tumour	

Sample	3		 Matched	Normal	

Sample	4	 Tumour	

Sample	4	 Matched	Normal	



Analysis	of	covariance	(Models	with	
categorical	and	con:nuous	variables)	

Sample	 ER	 Dose	

Sample	1	 +	 37	

Sample	2	 -	 52	

Sample	3	 +	 65	

Sample	4	 -	 89	

Sample	5	 +	 24	

Sample	6		 -	 19	

Sample	7	 +	 54	

Sample	8	 -	 67	

Number	of	samples:	8	
Number	of	factors:	2	

	ER:	Number	of	levels:	2	
	Dose:	Con:nuous	
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Analysis	of	covariance	(Models	with	
categorical	and	con:nuous	variables)	

Y1
Y2
Y3
Y4
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Y6
Y7
Y8
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R	code:	> design.matrix <- model.matrix(~ ER + dose) 	 		

If	we	consider	the	effect	of	dose	
linear	we	use	1	coefficient	(degree	
of	freedom).	We	can	also	model	it	
as	non-linear	(using	splines,	for	
example).	
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Sample	 ER	 Dose	

Sample	1	 +	 37	

Sample	2	 -	 52	

Sample	3	 +	 65	

Sample	4	 -	 89	

Sample	5	 +	 24	

Sample	6		 -	 19	

Sample	7	 +	 54	

Sample	8	 -	 67	



Analysis	of	covariance	(Models	with	
categorical	and	con:nuous	variables)	
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If	the	interac:on	is	significant,	the	
effect	on	the	dose	is	different	
depending	on	the	levels	of	ER.	

Interac:on:	Is	it	the	effect	of	dose	equal	in	ER	+	and	ER	-?	
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R	code:	> design.matrix <- model.matrix(~ ER * dose) 	 		

Sample	 ER	 Dose	

Sample	1	 +	 37	

Sample	2	 -	 52	

Sample	3	 +	 65	

Sample	4	 -	 89	

Sample	5	 +	 24	

Sample	6		 -	 19	

Sample	7	 +	 54	

Sample	8	 -	 67	



Time	Course	experiments	
Treatment	 Time	

Treatment	A	 0h	

Treatment	A	 1h	

Treatment	A	 4h	

Treatment	A	 16h	

Control	 0h	

Control		 1h	

Control	 4h	

Control	 16h	

Number of samples: 2
Number of factors: 2

Treatment: Number of levels: 2
Time: Continuous or categorical?

Main question: how does 
expression change over 
time?

If we model time as 
categorical, we don’t 
make assumptions about 
its effect, but we use too 
many degrees of 
freedom.
If we model time as 
continuous, we use less 
degrees of freedom but 
we have to make 
assumptions about the 
type of effect. 48Intermediate solution: splines



Time	Course	experiments:	no	assump:ons	

Y1
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Y5
Y6
Y7
Y8
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R code: > design.matrix <- model.matrix(~Sample + factor(Time)) 

We can use 
contrasts to 
test 
differences at 
time points.
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Sample	 Time	

Treatment	A	 0h	

Treatment	A	 1h	

Treatment	A	 4h	

Treatment	A	 16h	

Control	 0h	

Control	 1h	

Control	 4h	

Control	 16h	



Time	Course	experiments	

Y1
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Y5
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Y8
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R code: > design.matrix <- model.matrix(~Sample + Time) 

We are 
assuming a 
linear effect 
on time
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time

small coef x

Big coef x

Large neg coef x
Intermediate models are possible: splines

Sample	 Time	

Treatment	A	 0h	

Treatment	A	 1h	

Treatment	A	 4h	

Treatment	A	 16h	

Control	 0h	

Control	 1h	

Control	 4h	

Control	 16h	



Mul:	factorial	models	

•  We	can	fit	models	with	many	variables	
•  Sample	size	must	be	adequate	to	the	number	of	factors	
•  Same	rules	for	building	the	design	matrix	must	be	used:		

•  There	will	be	one	column	in	design	matrix	for	the	intercept	
•  Con:nuous	variables	with	a	linear	effect	will	need	one	column	in	the	design	

matrix	
•  Categorical	variable	will	need	♯levels	-1	columns	
•  Interac:ons	will	need	(♯levels	-1)	x		(♯levels	-1)		
•  It	is	possible	to	include	interac:ons	of	more	than	2	variables,	but	the	number	of	

samples	needed	to	accurately	es:mate	those	interac:ons	is	large.	
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Generalized	linear	
models	



Sta:s:cal	models	

– We	want	to	model	the	expected	result	of	an	
outcome	(dependent	variable)	under	given	values	
of	other	variables	(independent	variables)	

E(Y ) = f (X)
Y = f (X)+ε

Expected	value	of	variable	y	
Arbitrary	func:on	(any	shape)	

A	set	of	k	independent	
variables	(also	called	
factors)	

This	is	the	variability	
around	the	expected	
mean	of	y	
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Linear	models		

– The	observed	value	of	Y	is	a	linear	combina:on	of	
the	effects	of	the	independent	variables	

–  If	we	include	categorical	variables	the	model	is	
called	General	Linear	Model	

E(Y ) = β0 +β1X1 +β2X2 +...+βkXk

E(Y ) = β0 +β1X1 +β2X
2
1 +...+βpX

p
1

E(Y ) = β0 +β1 log(X1)+β2 f (X2 )+...+βkXk

Arbitrary	number	of	independent	variables	

Polynomials	are	valid	

We	can	use	func:ons	
of	the	variables	if	the	
effects	are	linear	

Smooth		func:ons:	not	exactly	the	same	as	
the	so-called	addi/ve	models	
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Model	Es:ma:on	

Y = βX +ε
β

β̂

se(β̂)

Parameter of interest (effect of X on Y)

Estimator of the parameter of interest

Standard Error of the estimator 
of the parameter of interest



Model	Es:ma:on	
We	can	use	least	squares	esImaIon		
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Given	n	observa:ons	(y1,..yn,x1,..xn)		minimize	the	differences	between	the	observed	
and	the	predicted	values	

56

ŷ = Xβ̂
e = y− ŷ

Fised	values	(predicted	by	the	model)	

Residuals	(observed	errors)	



Model	Es:ma:on	
We can use maximum likelihood estimation 

Find the set of values that maximizes the likelihood of the 
observed data

57

MLE : β̂ = argmax{L(β | x)}
L(β | y) = fβ (y)∏

It is easier to work with the log-likelihood

In the case of errors normally distributed, the least squares and 
the MLE estimators are the same 



Model	Es:ma:on	
Y = βX +ε

β

β̂

se(β̂)

Parameter	of	interest	(effect	of	X	on	Y)	

EsImator	of	the	parameter	of	interest	

Standard	Error	of	the	es:mator	of	the	parameter	of	interest	

β̂ = (XTX)−1XTY

se(β̂i ) =σ ci
where ci is the i

th diagonal element of XTX( )
−1

ŷ = Xβ̂
e = y− ŷ

Fised	values	(predicted	by	the	model)	

Residuals	(observed	errors)	 58



Model	Assump:ons	
In	order	to	conduct	sta:s:cal	inferences	on	the	parameters	on	the	model,	
some	assump:ons	must	be	made:	
•  The	observa:ons	1,..,n	are	independent	
•  Normality	of	the	errors:	

•  Homoscedas:city:	the	variance	is	constant.	
•  Linearity.	

εi ~ N(0,σ
2 )
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Generalized	linear	models	

– Extension	of	the	linear	model	to	other	
distribu:ons	and	non-linearity	in	the	structure	(to	
some	degree)	

– Y	must	follow	a	probability	distribu:on	from	the	
exponen:al	family	(Bernoulli,	Binomial,	Poisson,	
Gamma,	Normal,…)	

– Parameter	es:ma:on	must	be	performed	using	
an	itera:ve	method	(IWLS).		

g(E(Y )) = XβLink	func:on	

60



Example:	Logis:c	Regression	

– We	want	to	study	the	rela:onship	between	the	
presence	of	an	amplifica:on	in	the	ERBB2	gene	
and	the	size	of	the	tumour	in	a	specific	type	of	
breast	cancer.	

– Our	dependent	variable	Y,	takes	two	possible	
values:	“AMP”,	“NORMAL”	(“YES”,	“NO”)	

– X	(size)	takes	con:nuous	values.	
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Example:	Logis:c	Regression	

It is very 
difficult to see 
the 
relationship. 
Let’s model 
the 
“probabilit
y of 
success”: in 
this case, the 
probability of 
amplification

62

●● ●●●● ●

●

●

●

●●

● ●●

●● ●

●

●

● ●

●●● ● ● ●●● ●

●

●●●● ● ● ●●

●

● ●●● ●

●

●

●

●

●

● ●●

●●

● ●

●

● ●●

●

● ●

●

●

●

● ●● ●●

●●

●● ●

●●

● ●● ●

●●

● ●

●

●●●

●

● ●● ● ●● ●

Size

ER
BB

2 
Am

pl
ific

at
io

n

5 10 15 20 25

NO
YE

S



Example:	Logis:c	Regression	

Some 
predictions 
are out of 
the possible 
range for a 
probability
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Example:	Logis:c	Regression	
We can transform the probabilities to a scale 
that goes from –Inf to Inf using log odds

logodds = log p
1− p
"

#
$

%

&
'
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Example:	Logis:c	Regression	

How	does	this	relate	to	the	generalized	linear	model?	
•  Y	follows	a	Bernoulli	distribu:on;	it	can	take	two	values	
(YES	or	NO)	

•  The	expecta:on	of	Y,	p	is	the	probability	of	YES	(EY=p)	
•  We	assume	that	there	is	a	linear	rela:onship	between	size	
and	a	func:on	of	the	expected	value	of	Y:	the	log	odds	(the	
link	func:on)	

logodds(prob.amplif ) = β0 +β1Size
g(EY ) = βX
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Binomial	Distribu:on	

•  It	is	the	distribu:on	of	the	number	of	events	
in	a	series	of	n	independent	Bernoulli	
experiments,	each	with	a	probability	of	
success	p.	

•  Y	can	take	integer		
										values	from	0	to	n	
•  EY=np	
•  VarY=	np(1-p)	
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Poisson	Distribu:on	

•  Let	Y	~	B(n,p).	If	n	is	large	and	p	is	small	then	Y	
can	be	approximated	by	a	Poisson	Distribu:on	
(Law	of	rare	events)	

•  Y	~	P(λ)	
•  EY=λ	
•  VarY=λ	

670 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Poisson Distributionλ = 2
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Nega:ve	Binomial	Distribu:on	

•  Let	Y	~	NB(r,p)	
•  Represents	the	number	of	successes	in	a	Bernoulli	experiment	

un:l	r	failures	occur.		
•  It	is	also	the	distribu:on	of	a	con:nuous	mixture	of	Poisson	

distribu:ons	where	λ	follows	a	Gamma	distribu:on.		
•  It	can	be	seen	as	a	overdispersed	Poisson	distribu:on.	

p = µ
σ 2

r = µ 2

σ 2 −µ

Overdispersion	parameter	

Loca:on	parameter	
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Negative Binomial distribution. r=10, p=0.3
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Moving	from	point	es:ma:on	

•  Everything	starts	with	a	biological	ques:on	to	test:		
–  What	genes	are	differenIally	expressed	under	one	treatment?	
–  What	genes	are	more	commonly	amplified	in	a	class	of	
tumours?	

–  What	promoters	are	methylated	more	frequently	in	cancer?	
•  We	must	express	this	biological	ques:on	in	terms	of	a	

parameter	in	a	model.	
•  We	then	conduct	an	experiment,	obtain	data	and	es:mate	

the	parameter.	
•  How	do	we	take	into	account	uncertainty	in	order	to	

answer	our	ques:on	based	on	our	es:mate?	
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Confidence	Intervals	

•  Range of “likely” values for our theoretical parameter 
β

•  They have a confidence 1-α associated
•  Under many repetitions of our experiment, a 

proportion 1-αof the confidence intervals we would 
build would contain the real value of the parameter

70

β̂i ± t(n− p,1−α / 2)se(β̂i )



•  Null Hypothesis: Our population follows a 
(known) distribution defined by a set of parameters:  
H0 : X ~ f(θ1,…θk)

•  Take a random sample (X1,…Xn) = (x1,…xn) and 
observe test statistic 

T(X1,…Xn)= t(x1,…xn) 

•  The distribution of T under H0 is known (g(.))

•  p-value : probability under H0 of observing a 
result as extreme as t(x1,…xn)

                       
71

Hypothesis	tes:ng	



Type	I	and	Type	II	errors	

•  Type I error: probability of rejecting the null hypothesis when 
it is true. Usually, it is the significance level of the test. It is 
denoted as α

•  Type II error: probability of not rejecting the null hypothesis 
when it is false It is denoted as β

•  Decreasing one type of error increases the other, so in 
practice we fix the type I error and choose the test that 
minimizes type II error.
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The	power	of	a	test	
•  The power of a test is the 

probability of rejecting the 
null hypothesis at a given 
significance level when a 
specific alternative is true

•  For a given significance level 
and a given alternative 
hypothesis in a given test, the 
power is a function of the 
sample size

•  What is the difference 
between statistical 
significance and biological 
significance?
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With enough sample size, we can detect any 
alternative hypothesis (if the estimator is 
consistent, its standard error converges to zero 
as the sample size increases) 
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The	Likelihood	Ra:o	Test	(LRT)	
•  We	are	working	with	models,	therefore	we	
would	like	to	do	hypothesis	tests	on	coefficients	
or	contrasts	of	those	models	

•  We	fit	two	models	M1	without	the	coefficient	to	
test	and	M2	with	the	coefficient.		

•  We	compute	the	likelihoods	of	the	two	models	
(L1	and	L2)	and	obtain	LRT=-2log(L1	/L2)	that	has	
a	known	distribu:on	under	the	null	hypothesis	
that	the	two	models	are	equivalent.	This	is	also	
known	as	model	selec/on.	
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Large-Scale	Hypothesis	Tes:ng	

•  In sequencing experiments we are fitting one 
model for each probe/gene/exon/sequence of 
interest, and therefore performing thousands 
of tests.

•  Type I error is not equal to the significance 
level of each test.

•  Multiple test corrections try to fix this 
problem (Bonferroni, FDR,…)
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Controlling	the	number	of	errors	

Null	Hypothesis	True	 AlternaIve	
Hypothesis	True	

Total	

Not	Significant	
(don’t	reject)	 ♯True	Nega:ve	 ♯False	Nega:ve	

(Type	II	error)	 N-♯	Rejec:ons	

Significant	(Reject)	 ♯False	posi:ve	
	(Type	I	error)	

♯True	posi:ve	 ♯Total	Rejec:ons	

Total	 n0	 N-n0	 N	

N = number of hypothesis tested
R = number of rejected hypothesis
n0 = number of true hypothesis



Controlling	the	family-wise	error	rate	

•  One alternative is to control the probability of making at least 
one false rejection: 
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Bonferroni correction: reject each hypothesis at α/N level
It is a very conservative method (we are controlling for even just one 
false rejection!!!)
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Controlling	the	False	Discovery	Rate	(FDR)	
N = number of hypothesis tested
R = number of rejected hypothesis
n0 = number of true hypothesis

FDR aims to control the set of false positives among the 
rejected null hypothesis.

Family Wise Error Rate: FWER = P(V≥1)
False Discovery Rate: FDR = E(V/R | R>0) P(R>0)

Null	Hypothesis	True	 AlternaIve	
Hypothesis	True	

Total	

Not	Significant	
(don’t	reject)	 ♯True	Nega:ve	 ♯False	Nega:ve	

(Type	II	error)	 N-♯	Rejec:ons	

Significant	(Reject)	 V=♯False	posi:ve	
	(Type	I	error)	

♯True	posi:ve	 R=♯Total	
Rejec:ons	

Total	 n0	 N-n0	 N	



Benjamini-Hochberg	FDR	Control)	
If we order the observed p-values from smallest to largest, let
imax be the largest index such as 

p(i) ≤ i
N
q

Where q is a value between 0 and 1 chosen a priori such as 
FDR = E(V/R | R>0) ≤ q 

Then BH criteria is to reject Ho(i) for i ≤	imax	
	
There is a relationship between FDR as the Bayes posterior 
probability of nullness (see Efron and Hastie)



Mul:ple	power	problem	

•  We	have	another	problem	related	to	the	power	of	
each	test.	Each	unit	tested	has	a	different	test	sta:s:c	
that	depends	on	the	variance	of	the	distribu:on.	This	
variance	is	usually	different	for	each	gene/transcript,…	

•  This	means	that	the	probability	of	detec:ng	a	given	
difference	is	different	for	each	gene;	if	there	is	low	
variability	in	a	gene	we	will	reject	the	null	hypothesis	
under	a	smaller	difference	

•  Methods	that	shrinkage	variance	(like	the	empirical	
Bayes	in	limma	for	microarrays)	deal	with	this	
problem.	
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Models	for	coun:ng	
data	



Microarray	expression	data	

Adapted	from	slides	by	Benilton	Carvalho	
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Data	are	color	intensi:es	
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Gene	 Sample	1	 Sample	2	

ERBB2	 0	 45	

MYC	 14	 23	

ESR1	 56	 2	

Sequencing	data	

Adapted	from	slides	by	Benilton	Carvalho,	Tom	Hardcastle	

•  Transcript	(or	sequence,	or	methyla:on)	i		in	
sample	j	is	generated	at	a	rate	λij	

•  A	fragment	asaches	to	the	flow	cell	with	a	
probability	of	pij	(small)	

•  The	number	of	observed	tags	yij	follows	a	
Poisson	distribu:on	with	a	rate	that	is	
propor:onal	to	λijpij.	
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The	variance	in	a	Poisson	
distribu:on	is	equal	to	the	
mean	
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Extra	variability	

Adapted	from	slides	by	Benilton	Carvalho	
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Nega:ve	binomial	model	for	
sequencing	data	

Adapted	from	slides	by	Benilton	Carvalho	 85



Es:ma:ng	Overdispersion	with	edgeR	

•  edgeR	(Robinson,	McCarthy,	Chen	and	Smyth)	
•  Total	CV2=Technical	CV2	+	Biological	CV2	

•  Borrows	informa:on	from	all	genes	to	
es:mate	BCV.	
– Common	dispersion	for	all	tags	
– Empirical	Bayes	to	shrink	each	dispersion	to	the	
common	dispersion.		

Variability	in	gene	
abundance	between	
replicates	

Decreases	with	
sequencing	depth	
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Es:ma:ng	Overdispersion	with	DESeq	

•  DESeq	(Anders,	Huber)	
•  Var	=	sμ	+	αs2μ2	

•  es:mateDispersions()	
1.  Dispersion	value	for	each	gene		
2.  Fits	a	curve	through	the	es:mates	
3.  Each	gene	gets	an	es:mate	between	(1)	and	(2).	

Expected	
normalized	count	
value	

Size	factor	for	the	
sample	

Dispersion	of	the	
gene	
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Reproducibility		

Slide	by	Wolfgang	Huber	 88



A	few	number	of	genes	get	most	of	
the	reads	

Slide	by	Wolfgang	Huber	89



Effec:ve	library	sizes	

•  Also	called	normaliza:on	(although	the	counts	are	not	
changed!!!)	

•  We	must	es:mate	the	effec:ve	library	size	of	each	sample,	so	
our	counts	are	comparable	between	genes	and	samples	

•  Gene	lengths?	
•  This	library	sizes	are	included	in	the	model	as	an	offset	(a	

parameter	with	a	fixed	value)	
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Es:ma:ng	library	size	with	edgeR	

•  edgeR	(Robinson,	McCarthy,	Chen	and	Smyth)	
•  Adjust	for	sequencing	depth	and	RNA	
composi:on	(total	RNA	output)	

•  Choose	a	set	of	genes	with	the	same	RNA	
composi:on	between	samples	(with	the	log	
fold	change	of	normalised	counts)	afer	
trimming	

•  Use	the	total	reads	of	that	set	as	the	es:mate.	
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Es:ma:ng	library	size	with	DESeq	

•  DESeq	(Anders,	Huber)	
•  Adjust	for	sequencing	depth	and	RNA	
composi:on	(total	RNA	output)	

•  Compute	the	ra:o	between	the	log	counts	in	
each	gene	and	each	sample	and	the	log	mean		
for	that	gene	on	all	samples.	

•  The	median	on	all	genes	is	the	es:mated	
library	size.	
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