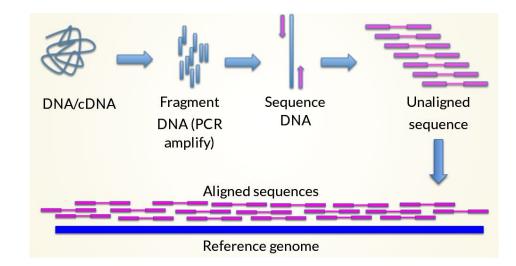
Reference genomes and common file formats

Dóra Bihary

MRC Cancer Unit, University of Cambridge

CRUK CI Bioinformatics Summer School July 2018


Overview

• Reference genomes and GRC

- Fasta and FastQ (unaligned sequences)
- SAM/BAM/CRAM (aligned sequences)
- Summarized genomic features
 - BED (genomic intervals)
 - GFF/GTF (gene annotation)
 - Wiggle files, BEDgraphs, BigWigs (genomic scores)

Why do we need to know about reference genomes?

- Allows for genes and genomic features to be evaluated in their genomic context.
 - Gene A is close to gene B
 - Gene A and gene B are within feature C
- Can be used to align shallow targeted high-throughput sequencing to a pre-built map of an organism

Genome Reference Consortium (GRC)

- Most model organism reference genomes are being regularly updated
- Reference genomes consist of a mixture of known chromosomes and unplaced contigs called Genome Reference Assembly
- Genome Reference Consortium:
 - <u>https://www.ncbi.nlm.nih.gov/grc</u>
 - A collaboration of institutes which curate and maintain the reference genomes of 4 model organisms:
 - Human GRCh38.p12 (December 2017)
 - Mouse GRCm38.p6 (September 2017)
 - Zebrafish GRCz11 (May 2017)
 - Chicken GRCg6a (May 2018)
 - Latest human assembly is GRCh38
 - Patches add information to the assembly without disrupting the chromosome coordinates
 - Fix patches will be incorporated into next major assembly
 - Novel patches alternate sequences
- Other model organisms are maintained separately, like:
 - Drosophila Berkeley Drosophila Genome Project

Overview

- Reference genomes and GRC
- Fasta and FastQ (unaligned sequences)
- SAM/BAM/CRAM (aligned sequences)
- Summarized genomic features
 - BED (genomic intervals)
 - GFF/GTF (gene annotation)
 - Wiggle files, BEDgraphs, BigWigs (genomic scores)

The reference genome

- A reference genome is a collection of contigs
- A contig refers to overlapping DNA reads encoded as A, G, C, T or N
- Typically comes in FASTA format:
 - ">" line contains information on contig
 - Following lines contain contig sequences

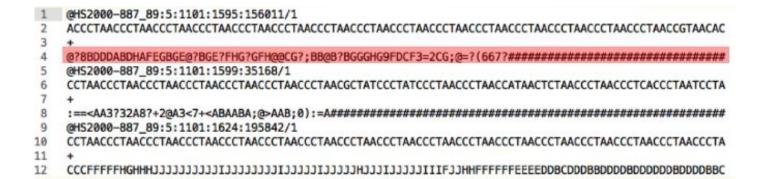
>gi|568815581:c7687550-7668402 Homo sapiens chromosome 17, GRCh38.p7 Primary Assembly

Unaligned sequences - FastQ

• Unaligned sequence files generated from HTS machines are mapped to a reference genome to produce aligned sequence

FastQ (unaligned sequences) → SAM (aligned sequences)

• FastQ: FASTA with quality


1	@HS2000-887_89:5:1101:1595:156011/1
2	ACCCTACCTACCCTACACCCTACCCTACCTACCCTACCCTACCCTACCCTACCTACCCTACCCTACCCTACCTACCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTA
3	•
4	@?8BDDDABDHAFEGBGE@?BGE?FHG?GFH@@CG?;BB@B?BGGGHG9FDCF3=2CG;@=?(667?##################################
5	@HS2000-887_89:5:1101:1599:35168/1
6	CCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACGCTATCCCTATCCCTAACCCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCCTAACCCCTAACCCTAACCCTAACCCCTAACCCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTACCCTAACCCTAACCCCTA
7	+
8	:== <aa3?32a8?+2@a3<7+<abaaba;@>AAB;0):=A####################################</aa3?32a8?+2@a3<7+<abaaba;@>
9	@H52000-887_89:5:1101:1624:195842/1
10	CCTAACCCCTAACCCTACCCTACCCTACCCTACCCTACCCTACCCTACCCTACCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCCC
11	•
12	CCCFFFFHGHHHJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

- "@" followed by identifier
- Sequence information
- "+"
- Quality scores encoded as ASCI characters

Unaligned sequences - FastQ header

- @HS2000-887_89:5:1101:1595:156011/1 ACCCTACACCCTAACCCTACACCCTACACCCTACACCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCTACCCTACCCCTACCCCTAACCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCC 2 3 4 @HS2000-887 89:5:1101:1599:35168/1 5 7 8 9 @HS2000-887_89:5:1101:1624:195842/1 11 12
- Header for each read can contain additional information
 - HS2000-887_89 Machine name
 - o 5 Flowcell lane
 - \circ /1 Read 1 or 2 of pair

Unaligned sequences - FastQ qualities

- Quality scores come after the "+" line
- Quality (*Q*) is proportional to -log₁₀ probability of sequence base being wrong (*e*):

 $Q = -\log_{10}(e)$

- Encoded in ASCII to save space
- Used in quality assessment and downstream analysis
- For further information: <u>https://en.wikipedia.org/wiki/FASTQ_format</u>

Overview

- Reference genomes and GRC
- Fasta and FastQ (unaligned sequences)
- SAM/BAM/CRAM (aligned sequences)
- Summarized genomic features
 - BED (genomic intervals)
 - GFF/GTF (gene annotation)
 - Wiggle files, BEDgraphs, BigWigs (genomic scores)

- SAM Sequence Alignment Map
- Standard format for sequence data
- Recognised by majority of software and browsers

SAM header

- SAM header contains information on alignment and contigs used
- @HD Version number and sorting information
- @SQ Contig/Chromosome name and length of sequence

@HD	VN:1.4 S0:coordinate
@SQ	SN:chr10 LN:130694993
@5Q	SN:chr11 LN:122082543
@SQ	SN:chr12 LN:120129022
@50	SN:chr13 LN:120421639
@50	SN:chr14 LN:124902244
@50	SN:chr15 LN:104043685
@50	SN:chr16 LN:98207768
@50	SN:chr17 LN:94987271
@50	SN:chr18 LN:90702639
@50	SN:chr19 LN:61431566
@50	SN:chr2 LN:182113224
@SQ	SN:chr3 LN:160039680
@50	SN:chr4 LN:156508116
aso	SN:chr5 LN:151834684
@50	SN:chr6 LN:149736546
aso	SN:chr7 LN:145441459
@50	SN:chr8 LN:129401213
@50	SN:chr9 LN:124595110
@50	SN:chrM LN:16299
-	
@SQ	SN:chrY LN:91744698
	050 050

SAM aligned reads

- HS2000-905_68:3:1307:14091:6825 137 chr2 13894 92045101 254 28M1D72M 0 0 ATAGACAACTAACAGAGTGGGAACCCTGCCCCTGAACCCTGACCCCTAACCCCTGACCCCTGACCACTAACCCCTGGCCATAACCCCTAACCCCTA BC:Z:0 XD:Z:11T16^A\$5A1C45A18 SM:i:328 AS:1:0 13895 HS2000-905_68:1:1305:12812:167908 147 chr2 92045105 254 100M 92044908 -297 = CDDDCCDDDBDBBDDDDCCCCDDDCDDDB?DEEEEC@FFFFHGHGIGDC=IIIJIHGJJJHEDJJJIGF?IJJIIHJJIGFCJJHHHFHFFDD=aB AM:i:0 BC:Z:0 XD:Z:A3CT1TCA1AGTGGGAACC1TGAC4A14C8C12A13A18 SM:1:0 AS: i: 370 13896 HS2000-905_68:2:2107:9712:70649 163 chr2 254 100M 301 92045106 92045307 = CAACTATCAGAGGGGGAACCCTGACCCCTAACCCCTGACCCCTAACCCCTGACCCTGAGCACTAACCCCTGACCATAACCCTAACCCCCAACCC BC:Z:0 XD:Z:12T51C27C1T5 SM: 1: 346 AS: 1:797
- Contains read and alignment information and location
 - Read name
 - Sequence of read
 - Encoded sequence quality

SAM aligned reads

- HS2000-905_68:3:1307:14091:6825 137 chr2 13894 92045101 254 28M1D72M ATAGACAACTAACAGAGTGGGAACCCTGCCCCTGAACCCTGACCCCTAACCCCTGACCCCTGACCACTAACCCCTGGCCATAACCCCTAACCCCTA BC:Z:0 XD:Z:11T16^A\$5A1C45A18 SM:i:328 AS:1:0 13895 HS2000-905 68:1:1305:12812:167908 147 chr2 92045105 254 100M 92044908 -297TCAAAGAGTGGGACCCCTGAACCTGACCCTGACCCCTGACCCTGACCCTGACCCCTGACCCCTGACCCCTGACCCCTAACCCCTAACC CDDDCCDDDBDBBDDDDCCCCDDDCCDDDDB?DEEEEC@FFFFHGHGIGDC=IIIJIHGJJJHEDJJJIGF?IJJIIIHJJIGFCJJHHHFHFFDD=@B AM:i:0 BC:Z:0 XD:Z:A3CT1TCA1AGTGGGAACC1TGAC4A14C8C12A13A18 SM:1:0 AS:1:370 13896 HS2000-905_68:2:2107:9712:70649 163 chr2 92045106 254 100M 92045307 301 = CAACTATCAGAGGGGGAACCCTGACCCCTAACCCCTGACCCCTGACCCCTGACCCTGAGCACTAACCCCTGACCATAACCCCTAACCCCCAACCC BC:Z:0 XD:Z:12T51C27C1T5 SM:1:346 AS: i: 797
- Chromosome to which the read aligns
- Position in chromosome to which 5' end of the read aligns
- Alignment information "Cigar string"
 - 100M Continuous match of 100 bases
 - 28M1D72M 28 bases continuously match, 1 deletion from reference, 72 base match

SAM aligned reads

- HS2000-905_68:3:1307:14091:6825 137 chr2 13894 92045101 254 28M1D72M ATAGACAACTAACAGAGTGGGAACCCTGCCCCTGAACCCTGACCCCTAACCCCTGACCCCTGACCACTAACCCCTGGCCATAACCCCTAACCCCTA BC:Z:0 XD:Z:11T16^A\$5A1C45A18 SM:i:328 AS:1:0 92045105 HS2000-905 68:1:1305:12812:167908 147 chr2 254 100M 92044908 13895 -297 CDDDCCDDDBDBBDDDDCCCCDDDDB?DEEEEC@FFFFHGHGIGDC=IIIJIHGJJJHEDJJJIGF?IJJIIIHJJIGFCJJHHHFHFFDD=@B AM:i:0 BC:Z:0 XD:Z:A3CT1TCA1AGTGGGAACC1TGAC4A14C8C12A13A18 SM:1:0 13896 HS2000-905 68:2:2107:9712:70649 163 chr2 92045106 254 100M = 92045307 301 CAACTATCAGAGGGGGAACCCTGACCCCTAACCCCTGACCCCTAACCCCTGACCCTGAGCACTAACCCCTGACCATAACCCCTAACCCCCAACCC BC:Z:0 XD:Z:12T51C27C1T5 SM:i:346 AS: 1:797
- Bit flag TRUE/FALSE for pre-defined read criteria, like: is it paired? duplicate?
 - <u>https://broadinstitute.github.io/picard/explain-flags.html</u>
- Paired read position and insert size
- User defined flags

Compressed aligned sequences - BAM and CRAM format

- SAM files can be large, so to save space people usually store some compressed versions of them instead:
 - BAM files
 - Binary SAM files
 - You also need to store an index file
 - CRAM files
 - Another way to compress alignment files designed by the EBI
 - The compression is driven by the reference the sequence data is aligned to, so it is very important that the exact same reference sequence is used for compression and decompression
 - Typically 40-50% space saving compared to BAM files
 - Full compatibility with BAM files
 - For further information: <u>http://samtools.github.io/hts-specs/</u>

Overview

- Reference genomes and GRC
- Fasta and FastQ (unaligned sequences)
- SAM/BAM/CRAM (aligned sequences)
- Summarized genomic features
 - BED (genomic intervals)
 - GFF/GTF (gene annotation)
 - Wiggle files, BEDgraphs, BigWigs (genomic scores)

Summarised genomic features formats

- After alignment, sequence reads are typically summarised into scores over/within genomic intervals
 - BED genomic intervals with additional information
 - Wiggle files, BEDgraphs, BigWigs genomic intervals with scores
 - GFF/GTF genomic annotation with information and scores

BED format - genomic intervals

1	chr7	127471196	127472363
2	chr7	127472363	127473530
3	chr7	127473530	127474697
4	chr7	127474697	127475864
5	chr7	127475864	127477031
6	chr7	127477031	127478198
7	chr7	127478198	127479365
8	chr7	127479365	127480532
9	chr7	127480532	127481699

1	chr7	127471196	127472363	Pos1	10	+
2	chr7	127472363	127473530	Pos2	11	+
3	chr7	127473530	127474697	Pos3	20	+
4	chr7	127474697	127475864	Pos4	10	+
5	chr7	127475864	127477031	Neg1	98	-
6	chr7	127477031	127478198	Neg2	10	-
7	chr7	127478198	127479365	Neg3	67	_
8	chr7	127479365	127480532	Pos5	20	+
9	chr7	127480532	127481699	Neg4	50	-

- BED3 3 tab separated columns
 - Chromosome
 - Start
 - \circ End
- Simplest format

- BED6 6 tab separated columns
 - Chromosome, start, end
 - Identifier
 - Score
 - Strand ("." stands for strandless)

Wiggle format - genomic scores

Variable step Wiggle format

- 1 variableStep chrom=chr2
- 2 300701 12.5
- 3 300702 12.5
- 4 300703 12.5
- 5 300704 12.5
- 6 300705 12.5
- 9 variableStep chrom=chr2 span=5 10 300701 12.5
- Information line:
 - Chromosome
 - (Span default=1, to describe contiguous positions with same value)
- Each line contains:
 - Start position of the step
 - Score

Fixed step Wiggle format

- 15 fixedStep chrom=chr3 start=400601 step=100
- 16 11
- 17 22 18 33
- 21 fixedStep chrom=chr3 start=400601 step=100 span=5
- 22 11
- 23 22 24 33
- Information line:
 - Chromosome
 - Start position of first step
 - Step size
 - (Span default=1, to describe contiguous positions with same value)
- Each line contains:
 - Score

bedGraph format - genomic scores

- BED-like format
- Starts as a 3 column BED file (chromosome, start, end)
- 4th column: score value

1	chr1	10001	10002	1
2	chr1	10003	10010	10
3	chr1	10011	10020	11
4	chr1	10021	10040	10
5	chr1	10041	10050	2
6	chr1	10051	99999	0

GFF/GTF files - genomic annotation

• Stores position, feature (exon) and meta-feature (transcript/gene) information

1	##aff.	version	3	_			_			
2	chrl	BLAST	exo	5	1300	1500	- 83	Ŧ	- 22	ID=exon0001;PARENT=Genel
з	chrl	BLAST	exo	n	1050	1500	- 33	÷	1	ID=exon0002;PARENT=Genel
4	chrl	BLAST	exo	n	3000	3902	190	+	1.22	ID=exon0003;PARENT=Genel
5	chrl	BLAST	exo	n	5000	5500	22	+	12	ID=exon0004;PARENT=Genel
6	chrl	BLAST	exo	n	7000	9000	-63	+	- 63	ID=exon0005;PARENT=Genel

- Columns:
 - Chromosome
 - Source
 - Feature type
 - Start position
 - End position
 - Score
 - Strand
 - Frame 0, 1 or 2 indicating which base of the feature is the first base of the codon
 - Semicolon separated attribute: ID (feature name); PARENT (meta-feature name)

Saving time and space - compressed file formats

- Many programs and browsers deal better with compressed, indexed versions of genomic files
 - SAM -> BAM (.bam and index file of .bai)
 - SAM/BAM -> CRAM (.cram file with the reference)
 - BED -> bigBed (.bb)
 - Wiggle and bedGraph -> bigWig (.bw/.bigWig)
 - BED and GFF -> (.gz and index file of .tbi)

Getting help and more information

- UCSC file formats
 - <u>https://genome.ucsc.edu/FAQ/FAQformat.html</u>
- IGV file formats
 - <u>http://software.broadinstitute.org/software/igv/FileFormats</u>
- Sanger file formats
 - <u>http://gmod.org/wiki/GFF3</u>

Acknowledgement

• Tom Carroll

http://mrccsc.github.io/genomic_formats/genomicFileFormats.html#/