# **Introduction to Next Generation Sequencing**

### Shamith Samarajiwa

CRUK Summer School in Bioinformatics Cambridge, September 2018





## Where to get help!



### http://seqanswers.com

http://www.biostars.org





http://www.bioconductor.org/help/mailing-list Read the posting guide before sending email!

### Overview

- Understand the difference between reference genome builds
- Introduction to Illumina sequencing
- Short read aligners
  - BWA
  - Bowtie2
  - STAR
  - Other aligners
- Genomic Coverage and Depth
- Mappability
- Use of decoy and sponge databases
- Alignment Quality, SAMStat, Qualimap
- Samtools and Picard,
- Visualization of alignment data (IGV)
- A very brief look at long reads, graph genome aligners and *de novo* genome assembly

### Reference Genomes

- A haploid representation of a species genome.
- The human genome is a haploid mosaic derived from 13 volunteer donors from Buffalo, NY. USA.
- In regions where there is known large scale population variation, sets of alternate loci (178 in GRCh38) are assembled alongside the reference locus.
- The current build has around 500 gaps, whereas the first version had ~150,000 gaps.
- Allelic diversity and structural variation present challenges.

Genome Reference Consortium: https://www.ncbi.nlm.nih.gov/grc

### GRCh 38



Region containing alternate loci

Region containing fix patches

Region containing novel patches

### Cost per Genome



#### Next Generation Genomics: World Map of High-throughput Sequencers



🖉 Show all platforms 🗟 454 🗟 HiSeq 🗧 HiSeq X Ten 🗟 Illumina GA2 🗟 Ion Torrent 🗟 MiSeq 🗟 MinION 🗟 NextSeq 🗟 PacBio 🗟 Polonator 🗟 Proton 🗟 SOLID 🗟 Service Provider

|                                        | NextSeq*†       | Image: Windowski state      Image: Windowski sta | NovaSeq 6000*††  |
|----------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Output Range                           | 20–120 Gb       | 125–1500 Gb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 134–6000 Gb      |
| Run Time                               | 11–29 hr        | < 1–3.5 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13–44 hr         |
| Reads per Run                          | 130–400 million | 2.5–5 billion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Up to 20 billion |
| Maximum Read Length                    | 2 × 150 bp      | 2 × 150 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 × 150 bp       |
| Samples per Run <sup>‡</sup>           | 2–8             | 50–100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26–400           |
| Relative Price per Sample <sup>‡</sup> | Higher Cost     | Mid Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lower Cost       |
| Relative Instrument Price <sup>‡</sup> | Lower Cost      | Mid Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Higher Cost      |

### Illumina Genome Analyzer



### Illumina sequencing technology

- Illumina sequencing is based on the Solexa technology developed by
  Shankar Balasubramanian and David Klenerman (1998) at the University of Cambridge.
- Multiple steps in "Sequencing by synthesis" (explained in next slide)
  - Library Preparation
  - Bridge amplification and Cluster generation
  - Sequencing using reversible terminators
  - Image acquisition and Fastq generation
  - Alignment and data analysis



### Illumina Flow-cell



### Sequencing by Synthesis technology



### Illumina Sequencing





Incorporation of fluorescence, reversibly terminated tagged nt

# Multiplexing

- Multiplexing gives the ability to sequence multiple samples at the same time.
- Useful when sequencing small genomes or specific genomic regions.
- Different barcode adaptors are ligated to different samples.
- Reads de-multiplexed after sequencing.



- A. Two representative DNA fragments from two unique samples, each attached to a specific barcode sequence that identifies the sample from which it originated.
- B. Libraries for each sample are pooled and sequenced in parallel. Each new read contains both the fragment sequence and its sampleidentifying barcode.
- C. Barcode sequences are used to de-multiplex, or differentiate reads from each sample.
- D. Each set of reads is aligned to the reference sequence.



## FASTQ format



A FASTQ file normally uses four lines per sequence.

Line-1 begins with a '@' character and is followed by a sequence identifier and an optional description.

Line-2 is the raw sequence letters.

Line-3 begins with a '+' character and is optionally followed by the same sequence identifier again.

Line-4 encodes the quality scores (ASCII) for the sequence in Line 2.

Historically there are a number of different FASTQ formats. These include the Sanger Format, Illumina/Solexa 1.0, Illumina 1.3, 1.5, 1.8 and 1.9

Cock et al., Nucleic Acids Res. 2010 Apr;38(6):1767-71.