(Ref: Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013 Dec;10(12):1213-8. doi: 10.1038/nmeth.2688. Epub 2013 Oct 6. PubMed PMID: 24097267; PubMed Central PMCID: PMC3959825.)
SRA_ID of ATACseq_50k_Rep2 sample: SRR891269 (see in RawData/ATAC folder for fastq and bam files). In the interest of time and available compute power, We will work on a single chromosome in this tutorial.
We will use both R/Bioconductor packages as well as other software packages for ATAC-seq analysis.
R
# Install only if missing
library(BiocInstaller)
biocLite(c("ATACseqQC", "ChIPpeakAnno", "MotifDb", "GenomicAlignments",
"BSgenome.Hsapiens.UCSC.hg19", "TxDb.Hsapiens.UCSC.hg19.knownGene",
"phastCons100way.UCSC.hg19"))
#hg38 versions
biocLite(c("BSgenome.Hsapiens.UCSC.hg38", "TxDb.Hsapiens.UCSC.hg38.knownGene", "phastCons100way.UCSC.hg38"))
This tutorial will demonstrate the computational processing and analyse of ATAC-seq data. The quality control, artefact removal and alignment of Fastq files to a reference genome are the same as for ChIP-seq and will not be repeated.
type all bash code in terminal / shell and R code in RStudio
bash
# DON'T RUN!
# Example of How To Build a Reference Genome
# Download reference genome from UCSC and make BWA index
rsync -avzP rsync://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/ .
ls |grep "alt" | rm -rf
gunzip *.gz
# cat * > genome.fa will lose the numerical ordering (for lexicographical ordering instead) so you get: 1, 11-19, 2, 20-22, 3-9, M, other, X, Y. Some tools want the proper ordering (1-22, X, Y, M, other), which is possible using a line of bash :
# concatenate the fasta files into a single reference fasta file
echo "$(ls chr*.fa | sort -V | grep -vP 'chr[^X|Y|\d]'; ls chr*.fa | sort -V | grep -vP 'chr[\d|X|Y]')" | xargs cat > hg38.fa
# see if the chromosoem order is preserved
grep chr hg38.fa
# make bwa index
bwa index -a bwtsw hg38.fa
bash
# QC and artefact removal
# Similar to previous practicals (use FASTQC and cutadapt)
bash
# DON'T RUN!
# align to hg38
bwa mem -M -t 40 hg38 SRR891270_1_trim.fastq.gz SRR891270_2_trim.fastq.gz > SRR891270.sam
bash
# DON'T RUN!
# sort and index BAM file of ATAC sample
samtools view -S -b -h -T hg38.fa SRR891270.sam | samtools sort -@ 8 -O bam -T SRR891270.tmp -o SRR891270.bam -
bash
# DON'T RUN!
# Peak calling for ATAC-seq is different to ChIP-seq!
# Peaks representing Nucleosome Free Regions (NFRs)
MACS2 callpeak -t SRR891270.bam --nomodel --shift -100 --extsize 200 --format BAM -g hg38
# Optionally, for paired end data
MACS2 callpeak -t SRR891270.bam --format BAMPE -g hg38
# For nucleosome occupancy shift and extension can centre the signal on nucleosomes (147 bp DNA is wrapped in a nucleosome)
MACS2 callpeak -t SRR891270.bam --nomodel --shift 37 --extsize 73 --format BAM -g hg38
--nomodel: don’t build shifting model
--shift: when this value is negative, ends will be moved toward 3'->5' direction
--extsize: extend reads in 5’->3’ direction to fix-sized fragments
R
# plot the number of mapped reads per chromosome
library("Rsubread")
library("Rsamtools")
library("ggplot2")
library("devtools")
library("magrittr")
R
## load the library
library("ATACseqQC")
# input the bamFile from the ATACseqQC package
bamfile <- system.file("extdata", "GL1.bam", package="ATACseqQC", mustWork=TRUE)
# BAM file name
bamfile.labels <- gsub(".bam", "", basename(bamfile))
# generate fragement size distribution
fragSize <- fragSizeDist(bamfile, bamfile.labels)
#bamQC(bamfile, outPath=NULL)
estimateLibComplexity(readsDupFreq(bamfile, index=bamfile))
Tn5 transposase has been shown to bind as a dimer and inserts two adaptors into accessible DNA locations separated by 9 bp2.
Therefore, for downstream analysis, such as peak-calling and footprinting, all reads in input bamfile need to be shifted. The function shiftGAlignmentsList can be used to shift the reads. By default, all reads aligning to the positive strand are offset by +4bp, and all reads aligning to the negative strand are offset by -5bp1.
The adjusted reads will be written into a new bamfile for peak calling or footprinting.
R
## bamfile tags to be read in
tags <- c("AS", "XN", "XM", "XO", "XG", "NM", "MD", "YS", "YT")
## files will be output into outPath
outPath <- "splited"
dir.create(outPath)
## shift the coordinates of 5'ends of alignments in the bam file
library(BSgenome.Hsapiens.UCSC.hg19)
seqlev <- "chr1" ## subsample data for quick run
which <- as(seqinfo(Hsapiens)[seqlev], "GRanges")
gal <- readBamFile(bamfile, tag=tags, which=which, asMates=TRUE)
#shift the GAlignmentsLists by 5' ends. All reads aligning to the positive strand will be offset by +4bp, and all reads aligning to the negative strand will be offset -5bp by default.
gal1 <- shiftGAlignmentsList(gal)
shiftedBamfile <- file.path(outPath, "shifted.bam")
export(gal1, shiftedBamfile)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txs <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)
#PT score is calculated for coverage of promoter divided by the coverage of transcripts body. PT score will show if the signal is enriched in promoters.
pt <- PTscore(gal1, txs)
plot(pt$log2meanCoverage, pt$PT_score,
xlab="log2 mean coverage",
ylab="Promoter vs Transcript")
The shifted reads will be split into bins consisting of nucleosome free, mononucleosome, dinucleosome, and trinucleosome. Shifted reads that do not fit into any of the above bins will be discarded. Splitting reads is a time-consuming step because we are using random forest to classify the fragments based on fragment length, GC content and conservation scores.
By default, we assign the top 10% of short reads (reads below 100_bp) as nucleosome-free regions and the top 10% of intermediate length reads as (reads between 180 and 247 bp) mononucleosome. This serves as the training set to classify the rest of the fragments using random forest. The number of the tree will be set to 2 times of square root of the length of the training set.
library(phastCons100way.UCSC.hg19)
## run program for chromosome 1 only
txs <- txs[seqnames(txs) %in% "chr1"]
genome <- Hsapiens
## split the reads into NucleosomeFree, mononucleosome,
## dinucleosome and trinucleosome.
objs <- splitGAlignmentsByCut(gal1, txs=txs, genome=genome,
conservation=phastCons100way.UCSC.hg19)
### Save the binned alignments into bam files.
null <- writeListOfGAlignments(objs, outPath)
## list the files generated by splitBam.
dir(outPath)
library(ChIPpeakAnno)
bamfiles <- file.path(outPath,
c("NucleosomeFree.bam",
"mononucleosome.bam",
"dinucleosome.bam",
"trinucleosome.bam"))
## Plot the cumulative percentage of tag allocation in nucleosome-free
## and mononucleosome bam files.
cumulativePercentage(bamfiles[1:2], as(seqinfo(Hsapiens)["chr1"], "GRanges"))
#
TSS <- promoters(txs, upstream=0, downstream=1)
TSS <- unique(TSS)
## estimate the library size for normalization
(librarySize <- estLibSize(bamfiles))
#
## calculate the signals around TSSs.
NTILE <- 101
dws <- ups <- 1010
sigs <- enrichedFragments(gal=objs[c("NucleosomeFree",
"mononucleosome",
"dinucleosome",
"trinucleosome")],
TSS=TSS,
librarySize=librarySize,
seqlev=seqlev,
TSS.filter=0.5,
n.tile = NTILE,
upstream = ups,
downstream = dws)
## log2 transformed signals
sigs.log2 <- lapply(sigs, function(.ele) log2(.ele+1))
#plot heatmap
featureAlignedHeatmap(sigs.log2, reCenterPeaks(TSS, width=ups+dws),
zeroAt=.5, n.tile=NTILE)
## get signals normalized for nucleosome-free and nucleosome-bound regions.
out <- featureAlignedDistribution(sigs,
reCenterPeaks(TSS, width=ups+dws),
zeroAt=.5, n.tile=NTILE, type="l",
ylab="Averaged coverage")
## rescale the nucleosome-free and nucleosome signals to 0~1
range01 <- function(x){(x-min(x))/(max(x)-min(x))}
out <- apply(out, 2, range01)
matplot(out, type="l", xaxt="n",
xlab="Position (bp)",
ylab="Fraction of signal")
axis(1, at=seq(0, 100, by=10)+1,
labels=c("-1K", seq(-800, 800, by=200), "1K"), las=2)
abline(v=seq(0, 100, by=10)+1, lty=2, col="gray")
ATAC-seq footprints infer factor occupancy genome-wide. The factorFootprints function uses matchPWM to predict the binding sites using the input position weight matrix (PWM). Then it calculates and plots the accumulated coverage for those binding sites to show the status of the occupancy genome-wide. Unlike CENTIPEDE4, the footprints generated here do not take the conservation (PhyloP) into consideration. factorFootprints function could also accept the binding sites as a GRanges object.
## foot prints
library(MotifDb)
CTCF <- query(MotifDb, c("CTCF"))
CTCF <- as.list(CTCF)
print(CTCF[[1]], digits=2)
sigs <- factorFootprints(shiftedBamfile, pfm=CTCF[[1]],
genome=genome,
min.score="90%", seqlev=seqlev,
upstream=100, downstream=100)
#plot sample correlations
path <- system.file("extdata", package="ATACseqQC", mustWork=TRUE)
bamfiles <- dir(path, "*.bam$", full.name=TRUE)
gals <- lapply(bamfiles, function(bamfile){
readBamFile(bamFile=bamfile, tag=character(0),
which=GRanges("chr1", IRanges(1, 1e6)),
asMates=FALSE)
})
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txs <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(GenomicAlignments)
plotCorrelation(GAlignmentsList(gals), txs, seqlev="chr1")
R
vp <- vPlot(shiftedBamfile, pfm=CTCF[[1]],
genome=genome, min.score="90%", seqlev=seqlev,
upstream=200, downstream=200,
ylim=c(30, 250), bandwidth=c(2, 1))
V-plot for the entire dataset: