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Looking at ChIP-seq data

e Agood quality ChIP-seq experiment will have high enrichment over background

e Ways to quantify the quality: &
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e Tools to quantify quality:
o  ChIPQC (T Carroll, Front Genet, 2014.)
o  SPP package - Unix/Linux (PV Karchenko, Nature Biotechnol, 2008.)
o  ChlIP-seq guidelines and practices of the ENCODE and modENCODE consortia
(Landt et al, Genome Research, 2012.)
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Things that can go wrong

e The specificity of the antibody
o  Poor reactivity against the target of the experiment
o  High cross-reactivity with other proteins

e Degree of enrichment

e Biasesduring library preparation
o PCRamplification bias
o  Fragmentation bias

e These can all affect the quality of the data and the number of sites detected
e Identification and removal of technical noise from the data is important

'L andt et al, Genome Research, 2012.



Overview

e Distribution of signal
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Coverage profiles

FRiP: fraction of reads in peaks

REGI: relative enrichment in genomic intervals
FRiBI: fraction of reads in blacklisted regions



Visualisation of coverage profiles

e UsingIGV or USCS genome browser

A

1 ambmnc it AL o e . oornc
e

AT —— e —— | — | — | — o MAMM_AA‘. - H3K27Ac

; = TFH “ lll__ e ) —— RNA=eq

CTCF TEFF RNA-seq
Diagenode e e ——
J 1 3 PDCD1 5
= SIS 0 ) o

CTCF B

Encode 1 TR o aalish amd . am .‘mﬂ‘m. _ H3K27Ac
j_
— ..m-..;..._m..._ﬂmh_u_‘ Lk b sdint AL [0N1 P i sl Lo TEFF A S o o alhash A ‘m H3K27Ac

o HH . oSy - -I. - li + i
| : AR N
L
TEFF RNA-seq
P | L '} 1 - . [ s -
BCL6 5

\Weinstein et al, Blood, 2014.



FRiP - fragment of reads in peaks

e Auseful metric to measure global ChIP Percentage of Reads In Peaks
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REGI - relative enrichment in genomic intervals
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Dispersion of coverage

e The depth of coverage is the number of fragments
at a specific genomic region
e To build a coverage profile

o  Measure the number of base pairs with a given depth of -
coverage

o Normalise to the number of reads to compare samples Depth Base Pairs
e We expect the depth to have large diversity in an ! 3
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Dispersion of coverage

Dispersion coverage profile plotted with ChIPQC

More enriched libraries have higher number of bases at greater depths
Profile of control samples usually drops more quickly

The gap between samples and controls indicates enrichment
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Dispersion of coverage

e SSD:standardised standard deviation

e Metric to assess dispersion coverage SSD =
developed in htSeqTools package

e Provides measure of pile-up across the

genome, it is expected to be:
o  High for samples with enriched regions
o Low for controls with uniform coverage

e This measure is highly influenced by
regions, where the coverage is high
because of some mapping error, like
blacklisted regions
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Overview

e Clustering of Watson/Crick reads



Clustering of Watson/Crick reads
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Clustering of Watson/Crick reads

e Fragment length can be estimated from the data
o  Cross-correlation: correlation of reads on positive and negative strand after successive read shifts
o Cross-coverage: coverage of reads on both strands after successive shifts of reads on one strand; the
area covered by reads will be reduced after the shifting

e These metrics are computed in ChIPQC:

ER
FragCC = CCfragmentLength S g o
FragCC m
RelCC =
CCreadLength N
e Blacklisted regions have a large ol
contribution to read-length S
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Overview

e Other factors affecting site discovery
o Sequencing depth
o  Duplication rate, library complexity
o Controls



Sequencing depth

e The number of peaks depends
on the depth of sequencing
e Some ENCODE guidelines:

o  Sharp peaks (like transcription
factors):
m Mammalian: 10M reads
m  Worms and flies: 2M reads

o Broad peaks (some histone marks):

m Mammalian: 20M reads
m  Worms and flies: 5M reads

'L andt et al, Genome Research, 2012.
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Duplication rate, library complexity

Duplication rate is also a QC metric:
o Expected to be low (<1%) for inputs

DuplicateReads

TotalMappedReads x100

Duplicates can be artefacts:
o  PCR bias: certain genomic regions are preferentially amplified
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o Low initial starting material can introduce artificially enriched regions with overamplification

Duplicates can also be “legitimate”:

o Itisunavoidable in highly enriched experiments and deeply sequenced ChlIPs since it is naturally

increasing with the sequencing depth

Removing duplicates limits the dynamic range of ChIP signal:
o Maximum signal/base: one fragment on each strand in each possible position of the read

Signal _  =2"readLength

'L andt et al, Genome Research, 2012.



Duplication rate, library complexity

e Whatto do with duplicates?
e Always keep in mind enrichment efficiency and read depth

e Some approaches:
o Remove all duplicates
o Don’tremove duplicates as long as it has a reasonable rate
o Remove duplicates for some analysis:
m  Remove duplicates before peak-calling
m  Keep duplicates for differential binding analysis
o htSeqTools:
m Estimate duplicate numbers expected taking into account the sequencing depth and using
negative binomial model
m  Attempt to identify significantly outstanding duplicate numbers



Control/input samples

e The use of some kind of a control is always recommended

e You need different controls for:
o Different cell lines, cell types
o Different organisms
o Different treatments/conditions

e Types of controls:
o Input DNA:
m  Most popularly used
m  Controls for CNVs, sequencing -, fragmentation - and shearing biases
o 1gG:
m  Also controls for non-specific binding
m Introduces other biases
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