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SNVs, SNPs and somatic mutations

<ACAGCATGTGCTGGCTCACCACTGCCACCATCTGCC|
{TGCTGGCTCACCACTGCCACCATCTGCCCAAGGCCC|
ICAGCATGTGCTGGCTCACCACTGCCACCATCTGCCC>
ITGGCTCACCACTGCCACCATCTGCCCAAGGCCCTTC >
<AGCATGTGCTGGCTCACCACTGCCACCATCTGCCCA|

Normal

TGGCGACAGCGTGTGCTGGCTCACCACTGCCACCATCTGCCCAAGGCCCTTCCTCTTCATTCGGCTATC

Reference human genome
|ACAGCATGTGCTGGCTCACCACTGCCACC > (3 billion bases)

<GCATGTGCTGGCTCACCACTGCCACCATCTTCCCAA]
ICATGTGCTGGCTCACCACTGCCACCATCTTCCCAAG>
ICAGCATGTGCTGGCTCACCACTGCCACCATCTGCCC >
[ATGTGCTGGCTCACCACTGCCACCATCTTCCCAAGG > Tumour
<ACAGCATGTGCTGGCTCACCACTGCCACCATCTTCC

I I

Germline Somatic
mutation mutation
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Why are we interested in germline variants

Why are we interested in calling germline variants in an Analysis of Cancer Genomes course?

* We need to know the inherited variants to filter the somatic mutations

 Some germline variants predispose to cancer (GWAS studies)

* We can build noise models that improve somatic calling methods

* Quality check with multisample sequencing, tumour/normal pairs, DNA/RNA pairs

* Germline variants can refine copy number calling (more on that later today with Geoff)




Naive genotyping: Maximum likelihood estimator

Suppose we observe 25 alternate reads in a given SNP from 90 total reads. How do
we estimate the genotype of the SNP?

We can have three possible genotypes:

* RR

* RA

« AA

We can build the likelihood, that is the probability of our observations given a
particular genotype:

 P(25AltReads,65RefReads|RR)

* P(25AltReads,65RefReads|RA)

* P(25AltReads,65RefReads|AA)




Naive genotyping: Maximum likelihood estimator

In general, the number of alternate reads we observe if our depth is 90 follows a
binomial distribution with parameters n=90 and p, the probability of sequencing an
alternate allele.

90

L(x1G)= p=(1-p)*
25
This is a function of p. Assuming the locus is diploid, we can only have 3 possible
values of p:
* RR->p=0
e RA->p=0.5

* AA->p=1




Naive genotyping: Maximum likelihood estimator

90

L(x1G)= p=(1-p)®
25
We need to consider technical errors in the alignment!
* RR->p=0.05
e RA->p=0.5
« AA->p=0.95

Better error models are available!



Naive genotyping: Maximum likelihood estimator

90

L(x1G)= )

p25 (1 _ p)65

If we plot this function, what is the most likely value of the parameter?
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Incorporating additional information in our model

*  We know that some genotypes are more common that others in the population
* This information can help us deciding in situations where the likelihood is flat.
* We need Bayesian Inference for this.




Bayesian Statistics v Frequentist Statistics

* The main problem of Statistical Inference is the estimation of a specific feature
(parameter) of a population (for example, the genotype of a given individual on a
given locus)

* Classic (Frequentist) Statistics assume that the feature is deterministic (fixed at the
time of our observation)

* Bayesian Statistics assume that the feature is random

* This (apparently) small technical difference creates a huge philosophical distinction
(and a lot of technicalities too)

» Statisticians tend to be very passionate around each approach (although some are
pragmatic)




Bayesian Statistics: Principles

* |f the feature of the population that we want to estimate is a random variable, it
must have a probability distribution. We call this the prior distribution: P(G)

* We take a sample from the population, measure our observations, and compute
the likelihood or our data: P(R|G)

* We can then update our knowledge of the distribution of the parameter and obtain
its posterior distribution using the Bayes Theorem:

P(G)P(R|G)
P(R)

P(GIR)=

* P(R) is difficult to compute and it is the same for all possible genotypes, so in most
applications we just need to compute the numerator.

* We obtain a probability distribution! Not a single value! But we can obtain a range
of values with high probability (credible interval), or summarise the distribution
with the most likely value (maximum a posteriori) or the mean (posterior mean)



Naive Bayesian genotyping: Posterior probability

90

L(x1G)= p=(1-p)®
25
We need to consider Prior probabilities for each genotype:
P(RR)=0.75 ~
P(RA)=0.15 3
P(AA)=0.10 °

0.6

We can compute posterior probabilities:
P(RR|x)=P(x|RR)P(RR)
P(RA|x)=P(x| RA)P(RA)
P(AA|x)=P(x|AA)P(AA)

Posterior Probability
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Naive Bayesian genotyping: Posterior probability

In situations where we don’t have much data (lower depth), or there is more noise,
the prior can have more impact in the posterior. Let’s assume now 10 variant reads

out of 50:
Priors=1/3 each Priors=0.05, 0.30, 0.65
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Haplotypes and Computational Phasing

A haplotype is a set of genetic features that tend to be inherited together
In our context, we are interested in a set of SNPs that tend to be inherited together.
Why? Because it will make variant calling more robust

A T C G C A A C T

These are unphased genotypes.
We don’t know which ones come
from the mother/father




Haplotypes and Computational Phasing

A haplotype is a set of genetic features that tend to be inherited together
In our context, we are interested in a set of SNPs that tend to be inherited together
Why? Because it will make variant calling more robust

A T C G C A A C T

These are phased genotypes.
Now we know which ones come
from the mother/father




Statistical haplotype phasing (unrelated individuals)

Unphased genotypes Possible phasing A Possible phasing B Possible phasing C Possible phasing D
A/C A C A C A C A C
G/T G T G T T G T G
A/T A T T A A T T A
Population haplotype frequency 55% 0% 15% 5% 2% 3% 0% 20%
Population frequency of 0% 2% (15% % 5%) =1.5% 2%(2% %x3%)=0.12% 0%

unordered haplotype pair

Posterior probability of 0% 1.5%/(1.5% +0.12%)=93% 0.12%/(1.5% + 0.12%) = 7% 0%
unordered haplotype pair

Figure 1 | Statistical phasing of unrelated individuals using haplotype frequencies. Consider one individual with
a heterozygous genotype at each of three SNPs in a region. There are four possible haplotype configurations that are
consistent with the genotype data (possible phasing patterns A-D). Suppose that haplotype frequencies are available
from other individuals in the population at these sites (provided below each phasing pattern). These frequencies may
have been estimated from population data without additional modelling (with the a priori assumption that all haplotype
frequency configurations are equally likely) or from a model that accounts for the biological processes of recombination
and mutation (such as the Li and Stephens model*°). The population frequency of a haplotype pair is obtained using the
Hardy-Weinberg principle (independence of the two haplotypes within an individual); the factor of two in the frequency
of the haplotype pairs accounts for both possible assignments of maternal and paternal origin to the two haplotypes. The
posterior probabilities of the phased data are obtained from the population frequencies of the possible haplotype pairs.
In this example, the posterior probability of phasing B (93%) is much greater than that of phasing C (7%).

Source: Browning SR and Browning BL. Haplotype phasing: existing methods and new developments (2011). Nature Reviews Genetics, 12



Statistical haplotype phasing (related individuals)

SNP Unphased genotypes  Shared IBD-phased genotypes Possible phasing A Possible phasing B
index haplotype
Individual 1 Individual 2 Individual 1 Individual 2 Individual 1 Individual 2 Individual 1 Individual 2
1 A/C A/C ? ? ? ? ? A C A C C A C A
2 C/T C/C C C T C C C T C C C T C C
3 T/T T/G T T T T G T T T G T T T G
4 G/G A/G G G G G A G G G A G G G A
5 C/C C/C C C C C C C C C C C C C C
!’opulation frequency of haplotype (second instance of shared haplotype 5% 6% (5%) 01%  0.2% 03%  (0.2%) 3%
in parentheses)
. . 5% % 6% x 0.1% 0.2% % 0.3% x 3%
Population frequency of ordered trio of haplotypes Z3.0x104% 1.8 % 10-%
Posterior probability of phasing (normalized population frequency of 3%107%/(3x107% + 1.8 x 10°%) 1.8 x10°% /(3 x 10~% + 1.8 x 10°%)
trio of haplotypes) =94% =6%

Figure 3 | Use of identity-by-descent to determine haplotype phase. First, we discuss how to determine phase
using identity-by-descent (IBD) alone (main columns 1-4).When two individuals are known to be identical-by-descent
(for example, if they are a parent—offspring pair), the individuals share an allele at each marker, and this allele is
determined by the genotype data when one or both individuals are homozygous. In this example, the two individuals
with unphased genotypes shown in main column 2 are identical-by-descent. SNP 1 is heterozygous in both
individuals and thus cannot be phased using IBD but may be able to be phased using population haplotype
frequencies (see below). SNP 2 is homozygous in individual 2, and so the shared haplotype must have the C allele.
Analogously, SNPs 3 and 4 are homozygous in individual 1, so the shared alleles are T and G, respectively. SNP 5 is
homozygous in both individuals, so phasing is trivial. The inferred shared haplotype is shaded green. Use of IBD
phasing alone gives the phasing shown in the IBD-phased haplotype columns, in which the phasing of SNP 1 is
unknown. Second, we discuss how to determine phase using IBD and haplotype frequencies. Consider the same two
identical-by-descent individuals as above. The phase is determined by IBD at SNPs 2-5 (main column 3) but is not
determined at SNP 1, which is heterozygous in both individuals. Only haplotype phasings that satisfy the IBD-phasing
constraints need be considered. Here the two identical-by-descent individuals are phased jointly, so the joint phase at
SNP 1 must be consistent with the IBD, and the identical-by-descent haplotype is only included once in the
probability of the haplotype configuration. The inferred identical-by-descent haplotype is shaded in main columns 5
and 6. Haplotype phasing pattern A is much more probable (94%) than phasing pattern B (6%).




Phasing with short reads

= 144 UpP
128,786,960 bp 128,786,920 bp 128,787,000 bp 128,787,020 bp 128,787,040 bp 128,787,060 bp
| | | |




freeBayes variant caller

Features of the method:

e Itis a Bayesian method

e Itincorporates information from multiple samples
e It uses haplotype blocks

Components of the model:
* Modeling of the number of reads given a certain genotype as a multinomial distribution

* Itincorporates the probability of errors in the reads (as a function of the quality scores)

Garrison, E and Marth, G. Haplotype-based variant detection from short-read sequencing



GATK Pipeline
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GATK Pipeline

How HaplotypeCaller works

1. Define active regions

2. Determine haplotypes by assembly of the active region

3. Determine likelihoods of the haplotypes given the read data
4. Assign sample genotypes




