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Statistical Models for sequencing
data: from Ex erimental Design
to Gene[ai L eaP Model!s ﬂ"
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Outline

Experimental Design

Design and Contrast matrices
Generalized linear models
Models for counting data



1o consult the statistician after an
experiment is finished is often merely
to ask him to conduct a post mortem
examination. He can perhaps say
what the experiment died of.

Sir Ronald Fisher (1890-1962)

[evolutionary biologist, geneticist and statistician]




An approximate answer to the right
problem is worth a good deal more
than an exact answer

to an approximate problem.

John Tukey (1915-2000)

[Statistician]




An unsophisticated forecaster uses
statistics as a drunken man uses
lamp-posts - for support

rather than for illumination.

Andrew Lang (1844-1912)

[Poet, novelist and literary critic]




Experimental Design



Design of an experiment

Select biological questions of interest

|dentify an appropriate measure to answer
that question

Select additional variables or factors that can
have an influence in the result of the
experiment

Select a sample size and the sample units
Assign samples to lanes/flow cells.



Principles of Statistical Design of
Experiments
* R. A. Fisher:
— Replication
— Blocking

— Randomization.

* They have been used in microarray studies
from the beginning.

e Bar coding makes easy to adapt them to NGS
studies.



Sampling hierarchy

There are three levels of sampling:
e Subject Sampling
* RNA sampling

* Fragment sampling.

Auer and Doerge. Genetics 185:405-416(2010)



Unreplicated Data

NP E T
Flow-cell 1
T | T | T3 | T [BX| Ts | Tg | T7

Inferences for RNA and fragment-level can be
obtained through Fisher’s test. But they don’t
reflect biological variability.
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Replicated Data
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Inferences for treatment effect

using generalized linear models

(more on this later).

Is this a good design?
We should
randomize within
block!

Auer and Doerge. Genetics 185:405-416(2010)




Balanced Block Designs

* Avoids confounding effects:

— Lane effects (any errors from the point where the
sample is input to the flow cell until the data
output). Examples: systematically bad sequencing
cycles, errors in base calling...

— Batch effects (any errors after random
fragmentation of the RNA until it is input to the
flow cell). Examples: PCR amplification, reverse
transcription artifacts...

— Other effects non related to treatment.

12
Auer and Doerge. Genetics 185:405-416(2010)



Balanced blocks by multiplexing

* Treatment

« Biological replicate

* RNA extraction

+ Bar-code and pool

* Preparation for sequencing

» Sequence technical replicates

Balanced Blocked Design

A A A B B B

Lane 1 Lane2 Lane 3 Lane 4 Lane5 Lane 6

Confounded Design

* Treatment A A A B B B

+ Biological replicate

* RNA extraction and
preparation for
sequencing

» Sequence each
sample in alane Jy Jy

Lane1 Lane2 Lane3 Laned4 Lane5 Laneb

Auer and Doerge. Genetics 185:405-416(2010)




Balanced incomplete block design and
blocking without multiplexing

* Usually there are restrictions with the number
of treatments, replicates, unique bar codes
and available lanes for sequencing.

1

2

3

T111
T212

T211
T312

T311
T112

 3treatments (T, T,, T,)
* 1subject per treatment (T,;, T,1, T5,)
* 2technical replicates (Ty;1, T115 To11s

T212' T311' T312)

Auer and Doerge. Genetics 185:405-416(2010)



Simulations

Auer and Doerge. Genetics 185:405-416(2010)
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Benefits of a proper design

NGS is benefited with design principles

Technical replicates can not replace biological
replicates

It is possible to avoid multiplexing with
enough biological replicates and sequencing
lanes

The advantages of multiplexing are bigger

than the disadvantages (cost, loss of
sequencing depth, bar-code bias...)



Design and contrast
matrices



Statistical models

— We want to model the expected result of an
outcome (dependent variable) under given
values of other variables (independent
variables)

Arbitrary function (any shape)

Expected value of variable Y A set of k
independent variables

E(Y) = f(X) (also called factors)

This is the

Y = f(X)_I_ £ variability around

the expected
mean of y



Design matrix

— Represents the independent variables that have
an influence in the response variable, but also
the way we have coded the information and
the design of the experiment.

— For now, let’s restrict to models

Y=0pX+e¢

/ Stochastic error

Response variable  p,rameter vector

Design matrix
& 20



Types of designs considered

Models with 1 factor
— Models with two treatments
— Models with several treatments

Models with 2 factors
— Interactions

Paired designs

Models with categorical and continuous factors
TimeCourse Experiments

Multifactorial models.

21



Strategy

Define our set of samples

Define the factors, type of factors (continuous,
categorical), number of levels...

Define the set of parameters: the effects we want to
estimate

Build the design matrix, that relates the information
that each sample contains about the parameters.

Estimate the parameters of the model: testing
Further estimation (and testing): contrast matrices.



Models with 1 factor, 2 levels
sample |Treatment

Samplel Treatment A
Sample 2 Control
Sample 3 Treatment A
Sample 4 Control
Sample 5 Treatment A
Sample 6 Control

Number of samples: 6
Number of factors: 1
Treatment: Number of levels: 2

Possible parameters (What differences are important)?

- Effect of Treatment A
- Effect of Control

23



Design matrix for models with 1 factor, 2
sompie | st |

Samplel
Sample 2
Sample 3
Sample 4
Sample 5

Sample 6

Treatment A
Control
Treatment A
Control
Treatment A

Control

Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6

S1
S2
S3
S4
S5
S6

Design Matrix

Treat. A

levels

Control

Parameters (coefficients,
levels of the variable)

- - /

C

C is the mean expression of the control
T is the mean expression of the treatment

Equivalent to a t-test

24



Design matrix for models with 1 factor, 2
sompie | st |

Samplel
Sample 2
Sample 3
Sample 4
Sample 5

Sample 6

Treatment A
Control
Treatment A
Control
Treatment A

Control

Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6

S1
S2
S3
S4
S5
S6

Design Matrix

<
: =
(1
0

- | 1
0]

1

J \ 0

\

levels

— O = O = O control

9

Parameters (coefficients,
levels of the variable)

- /

Equivalent to a t-test

25



Intercepts

Different parameterization: using intercept

e e —

Samplel
Sample 2
Sample 3
Sample 4
Sample 5

Sample 6

Treatment A

Control

Treatment A

Control

Treatment A

Control

Let’s now consider this parameterization:

C= Baseline expression
T,= Baseline expression + effect of treatment

So the set of parameters are:
C = Control (mean expression of the control)

a = T,— Control (mean change in expression
under treatment

26



Intercept

Different parameterization: using intercept

Sample 4 S4
Sample 5 S5
Sample 6 S6 \

g

;L)-’» Parameters (coefficients,
Sample 1 - Y| 1 IE levels of the variable)
Sample 2 S2 1 _ _
Sample 3 S3 _ 1 /3)0

1

1

1

e Treatment A
__~

Intercept measures the

/ baseline expression.

a measures now the
differential expression
between Treatment A and
Control

Design Matrix

27



Contrast matrices

Are the two parameterizations equivalent?

=)

Contrast matrix

oy~

Contrast matrices allow us to
estimate (and test) linear
combinations of our
coefficients.

28



Models with 1 factor, more than 2 levels

sample ___________|Treatment _______

Samplel Treatment A
Sample 2 Treatment B
Sample 3 Control
Sample 4 Treatment A
Sample 5 Treatment B
Sample 6 Control

ANOVA models

Number of samples: 6
Number of factors: 1
Treatment: Number of levels: 3
Possible parameters (What differences are important)?
- Effect of Treatment A
- Effect of Treatment B
- Effect of Control
- Differences between treatments?



Design matrix for ANOVA models

st | )
sampie | meamer: IR 7,
Samplel Treatment A S3 = TB
Sample 2 Treatment B 54 C
Sample 3 Control AN -
Sample 4 Treatment A i S6 i \ /
Sample 5 Treatment B i S ] / \
Sample 6 Control § I ﬁo l
S3 | _ a
S4 b
S5 I
I 56 A /30




Design matrix for ANOVA models

51| \

1 0 O
Sampe | restment [ IRCS BN RN | I
Samplel Treatment A S3 = 0 0 1 TB
Sample 2 Treatment B 54 100
Sample 3 Control AN 0 10 -
Sample 4 Treatment A i S6 i \ 0 0 1 /
Sample 5 Treatment B i T
Samzle 6 Control S ( b0 \ I
S2 1 0 1
S3|_[100 4
Control = Baseline /7 54 110 b
T, = Baseline + a S5 1 0 1 i
Tg=Baseline+b 56 \ 1 0 0 / N




Baseline levels

The model with intercept always take one level as a baseline:

S2
S3
S4
S5

-Sl_

b S6 -

O = O O - O

_—O O = O O

The baseline is treatment A, the
coefficients are comparisons
against it!

By default, R uses the
first level as baseline

32



R code

R code:

>

>
>
>

Treatment <- rep(c(“TreatmentA”, “TreatmentB”,

“Control”), 2)

design.matrix <- model.matrix(~ Treatment) (model with intercept)

design.matrix <- model.matrix(~ -1 + Treatment)
design.matrix <- model.matrix(~ 0 + Treatment)

(model without intercept)
(model without intercept)

33



Build contrast matrices for all pairwise comparisons for this design:

_Sl_

S2
S3
S4
S5

. S6 -

OO = OO

O = O O = O

_—O O = O O

Exercise

-

Yy g P

34



Build contrast matrices for all pairwise comparisons for these designs:

_Sl_

S2
S3
S4
S5

. S6 -

OO = OO

O = O O = O

_—O O = O O

Exercise

-

(

\

1
0
1

0
1

-1

-1
-1
0

)

/

Yy g P
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Build contrast matrices for all pairwise comparisons for these designs:

_Sl_

S2
S3
S4
S5

L S6 -

O —_——_ O O

O = O O = O

Exercise

Q

SH QD

36



Exercise

Build contrast matrices for all pairwise comparisons for these designs:

S1
52
s3
S4
S5
L S6 -

Q
o O O

SH QD

O —_——_ O O

O = O O = O




Models with 2 factors
sample |Treatment  |ERstaus

Samplel Treatment A +
Sample 2 No Treatment +
Sample 3 Treatment A +
Sample 4 No Treatment +
Sample 5 Treatment A -
Sample 6 No Treatment -
Sample 7 Treatment A -
Sample 8 No Treatment -

Number of samples: 8

Number of factors: 2
Treatment: Number of levels: 2
ER: Number of levels: 2



Understanding Interactions

| NoTreat | TreatA

ER - S6, S8 S5, 57
ER + S2,54 S1,S3

Treat x ER negative
interaction

Treat x ER positive

interaction
Treat x
ER effects

[

Treat x
ER effects

Treat +
ER effects I

Treat Both
effect effects effect

Treat Both
effect effects eﬁect

Adapted from Natalie Thorne, Nuno L. Barbosa Morais 39



Models with 2 factors and no interaction

Model with no interaction: only main effects

Number of coefficients (parameters):
Intercept + (H levels Treat -1) + (H levels ER -1) =3

If we remove the intercept, the additional
parameter comes from the missing level in one of
the variables, but in models with more than 1 factor
it is a good idea to keep the intercept.

40



Models with 2 factors (no interaction)

R code: >design.matrix <- model.matrix(~Treatment+ER) (model with intercept)

S1 ( \ In R, the baseline for each

S variable is the first level.

S3

S4 Po

S5 |~ ¢

S6 MAE voreeat [reata
S7 - - ER - S6, S8 S5, S7

S8 \ / ER + S2, 5S4 S1,S3

41



Models with 2 factors (no interaction)

R code: >design.matrix <- model.matrix(~Treatment+ER) (model with intercept)

52 1 0 1
53 1 1 1 8,
Sl troon |
AR 1 1 0
S6 1 O O er +
o7 10 . |NoTreat |TreatA |
ER - S6, S8 S5, S7
i S8 i \1 O O) ER + S2, S4 S1, S3

42



Models with 2 factors and interaction

Model with interaction: main effects + interaction

Number of coefficients (parameters):

Intercept + (-

((

levels Treat -1) * (

flevels Treat -1) + ($# levels ER -1) +

levels ER-1)) =4

43



Models with 2 factors (interaction)

R code: > design.matrix <- model.matrix(~Treatment*ER) (model with intercept)

Y
1 / \
Y. 2
Y3 “Extra effect” of Treatment A on
/30 ER+ samples
Y, 4
= a
s er +
Y a.er +
v BN | NoTreat |TreatA
’ \ / ER - S6,58  S5,S7
Y8 ER + S2, S4 S1, S3

44



Models with 2 factors (interaction)

R code: > design.matrix <- model.matrix(~Treatment*ER) (model with intercept)

_ v _
Yl (111 1)
Y2 o0 | E ff fT A
“Extra effect” of Treatment A on
i 11 11 /30 ER+ samples
Yyjl_ftrot1ro]
Y, 11 00| .,
Y, 1 0 0 0
v 110 0 (L] HEE=IEEYS
’ 1.0 0 0 ER - S6,58  S5,57
] YS | ER + S2, S4 S1, S3

45



2 by 3 factorial experiment

* |dentify DE genes that have different time profiles
between different mutants.

o = time effect, [ = strains,

Ex
Pl a >0 Strain A
B =0 Strain B
afp=0
0 12 24 :
time
a>0 Strain A
Exp 8> 0 . )
ap=0 / train
time

Exp

= interaction effect

StrainA @=0

B> 0

StrainB p=0

Exp

12 24 )
time
StrainB  p>0
/ Strain A
12 24 ,
time

46
Slide by Natalie Thorne, Nuno L. Barbosa Morais



Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6
Sample 7
Sample 8

Paired Designs
sample 1y ______Wsample ___[type

Tumour
Matched Normal
Tumour
Matched Normal
Tumour
Matched Normal
Tumour

Matched Normal

Number of samples: 8
Number of factors: 1

Type: Number of levels: 2

Sample 1
Sample 1
Sample 2
Sample 2
Sample 3
Sample 3
Sample 4
Sample 4

Tumour
Matched Normal
Tumour
Matched Normal
Tumour
Matched Normal
Tumour

Matched Normal

Number of samples: 4

Number of factors: 2
Sample: Number of levels: 4
Type: Number of levels: 2

47



Design matrix for Paired experiments

We can gain precision in our estimates with a paired design, because individual
variability is removed when we compare the effect of the treatment within the
same sample.

R code: > design.matrix <- model.matrix(--1 +Type) (unpaired; model without intercept)

> design.matrix <- model.matrix(~-1 +Sample+Type) (paired; model without intercept)

These effects only reflect

| Y I biological differences not
— S — y, Looo 1} _ related to tumour/normal
Sample 1 Matched Normal v 1 0 0 0 O S1 effect.
Sample 2 Tumour 3 O 1 0 0 1 )
Sample 2 Matched Normal Y4 _ O 1 0 0 O S3
Sample 3 Tumour YS O 01 0 1 S4
Sample 3 Matched Normal Y6 O 01 0O f
Sample 4 Tumour Y7 0O 0 0 1 1
Sample 4 Matched Normal O 0 01 O
I Yy | 48




Analysis of covariance (Models with

categorical and continuous variables)
sample  JER __ |Dose

Sample 1 + 37
Sample 2 - 52
Sample 3 + 65
Sample 4 - 89
Sample 5 + 24
Sample 6 - 19
Sample 7 + 54
Sample 8 - 67

Number of samples: 8
Number of factors: 2
ER: Number of levels: 2
Dose: Continuous



Analysis of covariance (Models with
categorical and continuous variables)

R code: > design.matrix <- model.matrix(~ ER + dose)

Y,
Y 1 1 37
2 1 0 52 If we consider the effect of dose
Y, 11 65 linear we use 1 coefficient (degree
y by of freedom). We can also model it
42 1 0 39 er + as non-linear (using splines, for
Y, 1 1 24 d example).
v || 1O Db R
Y 1 1 54 Sample 1 + 37
7 Sample 2 - 52
1 O 67 Sample 3 + 65
Y8 Sample 4 - 89

Sample 5 + 24
Sample 6 - 19
Sample 7 + 54

50

Sample 8 - 67



Analysis of covariance (Models with
categorical and continuous variables)

Interaction: Is it the effect of dose equal in ER + and ER -?

R code: > design.matrix <- model.matrix(~ ER * dose)

NN N NN NN

N S G VA W S Y

O —_ O = O = O -

37
52
65
89
24
19
54
67

37
0
65
0
24
0
54
0

er+.d

Bo

er +

If the interaction is significant, the
effect on the dose is different
depending on the levels of ER.

Sample 1 + 37
Sample 2 - 52
Sample 3 + 65
Sample 4 - 89
Sample 5 + 24
Sample 6 - 19
Sample 7 + 54

51

Sample 8 - 67



Time Course experiments
Sample  |Time

Sample 1 Oh

Sample 1 1h Main question: how does
expression change over time?

Sample 1 4h

Sample 1 16h

Sample 2 Oh If we model time as categorical,

Sample 2 1h we don’t make assumptions

about its effect, but we use too
Sample 2 4h many degrees of freedom.
Sample 2 16h

If we model time as continuous,

we use less degrees of freedom
/ but we have to make assumptions
about the type of effect.

Number of samples: 2

Number of factors: 2
Sample: Number of levels: 2
Time: Continuous or categorical?

Intermediate solution: splines
52



Time Course experiments: no assumptions

R code: > design.matrix <- model.matrix(~Sample + factor(Time))

1 0 0 O O We can use
Y, 1 01 0 0 [ S, c?ntrasts to tes.t
Y3 100 1 0 differences at time

S, points.
Lf_flrooo 1| -
Y, 01000 Tl
Y, O 1 1 0 O 4
| sample  [Tme |

v 01 0 1 01| s
7 L ple 1l Oh

0 1 0 O 1 Sample 1 1h
Yg Sample 1 4h

Sample 2 16h 53



Time Course experiments

small coef x

16

> time

| sample | Tme
Sample 1 Oh
Sample 1 1h
R code: > design.matrix <- model.matrix(~Sample + Time) Sample 1 4h
Sample 1 16h
- - Sample 2 Oh
Y] Sample 2 1h
1 0 O Sample 2 4h
Y2 1 0 1 Sample 2 16h
Y, 10 4 |[g t We are assuming ag;, .
y 10 16 1 linear effect on
b= S, time
Y. 0 1 0 |
Y, O 1 1 (L |
Y, 0 1
0 1
¥

Intermediate models are possible: splines
Large neg coef x 54




Multi factorial models

* We can fit models with many variables
e Sample size must be adequate to the number of factors
e Same rules for building the design matrix must be used:

There will be one column in design matrix for the intercept

Continuous variables with a linear effect will need one column in the design
matrix

Categorical variable will need 3 levels -1 columns

Interactions will need (3 levels -1) x (#levels -1)

It is possible to include interactions of more than 2 variables, but the number of
samples needed to accurately estimate those interactions is large.

55



Generalized linear
models



Statistical models

— We want to model the expected result of an
outcome (dependent variable) under given values
of other variables (independent variables)

Arbitrary function (any shape)

Expected value of variable y
A set of k independent

E(Y)= f(X) e
= f(X)-I- & This is the variability

around the expected

mean of y 57



Fixed vs Random effects

— If we consider an independent variable X. as fixed,
that is the set of observed values has been fixed
by the design, then it is called a fixed factor.

— If we consider an independent variable X;as
random, that is the set of observed values comes
from a realization of a random process, it is called

a random factor.

— Models that include random effects are called
MIXED MODELS.

— In this course we will only deal with fixed factors.

58



Linear models

— The observed value of Y is a linear combination of
the effects of the independent variables

Arbitrary number of independent variables

EY)= /))O + /3’1X1 + /3’2X2 + o+ ﬁka Polynomials are valid
E(Y)=By+B X, +BX; +...+ B, X]
E(Y) =+, log(X,)+ B,/ (X,) +...+ 5, X,

We can use functions Smooth functions: not exactly the same as
of the variables if the the so-called additive models
effects are linear

— If we include categorical variables the model is

called General Linear Model
59



Model Estimation

We use least squares estimation
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and the predicted values



Model Estimation

Y=pX+¢
/3) » Parameter of interest (effect of X on Y)
/3) > Estimator of the parameter of interest
S@(/g)) > Standard Error of the estimator of the parameter of interest

B=X"X)'X"Y
Se(/g)i) = O'\/CT

where ¢, is the i diagonal element of (X X )_1

6l

N =
Il

/:)’X > Fitted values (predicted by the model)
Y

_ )’} > Residuals (observed errors)



Model Assumptions

In order to conduct statistical inferences on the parameters on the model,
some assumptions must be made:

 The observations 1,..,n are independent

* Normality of the errors:

e ~N(0,07)

* Homoscedasticity: the variance is constant.
* Linearity.

62



Generalized linear models

— Extension of the linear model to other
distributions and non-linearity in the structure (to
some degree)

Link function g(E(Y)) = Xﬁ

— Y must follow a probability distribution from the
exponential family (Bernoulli, Binomial, Poisson,
Gamma, Normal,...)

— Parameter estimation must be performed using
an iterative method (IWLS).

63



Example: Logistic Regression

— We want to study the relationship between the
presence of an amplification in the ERBB2 gene
and the size of the tumour in a specific type of
breast cancer.

— Our dependent variable Y, takes two possible
values: “AMP”, “NORMAL” (“YES”, “NO”)

— X (size) takes continuous values.

64



ERBB2 Amplification

YES

NO

Example: Logistic Regression

I
0

I
5

I
10

Size

I
15

20

It is very difficult
to see the
relationship.
Let’s model the
“probability
of success”:in
this case, the
probability of
amplification

65



Example: Logistic Regression

Some
predictions
are out of
the possible
range for a
probability

Prob.Amplification

66



Example: Logistic Regression

We can transform the probabilities to a scale
that goes from —Inf to Inf using log odds

logodds =log (L)
I-p

log odds Amplification

-10

0 5 10 15

20

67




Example: Logistic Regression

How does this relate to the generalized linear model?

e Y follows a Bernoulli distribution; it can take two values
(YES or NO)

 The expectation of Y, p is the probability of YES (EY=p)

 We assume that there is a linear relationship between size
and a function of the expected value of Y: the log odds (the
link function)

logodds(prob.amplif ) = b, + ,Size
g(EY)=pX

68



Binomial Distribution

It is the distribution of the number of events

in a series of n independent Bernoulli
experiments, each with a probability o

success p.

Y can take integer
values from O to n

EY=np

VarY= np(1-p)

lllllllllll tribution. n=10, p=0.3

000000000000

69



Poisson Distribution

Let Y ~ B(n,p). If nis large and p is small then Y
can be approximated by a Poisson Distribution

(Law of rare events)
Y~ P(A)

EY=A

VarY=A

Poisson

DistributionA = 2

O oe— ——

70



Negative Binomial Distribution

e LetY ™~ NB(r,p)

* Represents the number of successes in a Bernoulli experiment
until r failures occur.

e |tisalsothe distribution of a continuous mixture of Poisson
distributions where A follows a Gamma distribution.

* |t can be seen as a overdispersed Poisson distribution.

Negative Binomial distribution. r=10, p=0.3

P = iz Overdispersion parameter ¢’
U —_
2 -
r = u Location parameter [
O —Uu "
ﬂﬂﬂm MNWHHHHHHHHHH nnnnnn 7l




Hypothesis testing

Everything starts with a biological question to test:
— What genes are differentially expressed under one treatment?

— What genes are more commonly amplified in a class of
tumours?

— What promoters are methylated more frequently in cancer?

We must express this biological question in terms of a
parameter in a model.

We then conduct an experiment, obtain data and estimate
the parameter.

How do we take into account uncertainty in order to
answer our question based on our estimate?
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Sampling and testing

Discrete Random sample of 10
observations balls from the box
Hred = 3 ....
®e
® @9

When do | think that | am not
sampling from this box anymore!?

How many reds could | expect to 0% red balls and
get just by chance alone! 90% blue balls

73
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Discrete
observations

Hred = 3 ..

o O
Test @9
statistic ® ...
Rejection

criteria (based on

your observed sample,

do you have evidence to
reject the hypothesis

that you sampled from
the null population)

Sample

Random sample of 10
balls from the box

0% red balls and
90% blue balls

Null hypothesis

(about the population
that is being sampled)

Slide by Natalie Thorne, Nuno L. Barbosa MorZi‘g



Hypothesis testing

Null Hypothesis: Our population follows a
(known) distribution defined by a set of parameters:
Hy,: X~10,,...0,)

Take a random sample (X,,... X)) = (x,,...X,) and

@)

T

bserve test statistic
Xy X)) = (X y---X,)

he distribution of T under H,is known (g(.))

p-value : probability under H, of observing a
result as extreme as t(x,...X,)
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04

0.3

0.2

0.1

0.0

normal distribution

observed z-
score

High probability of
getting a more

extreme score just
by chance

P-value is high!

| | | | |
-4 -2 0 Z 4

Slide by Natalie Thorne, Nuno L. Barbosa Morais
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04

0.3

0.2

0.1

0.0

normal distribution

observed z-
score

Low probability of
getting a more
extreme score just
by chance

P-value is low

Reject nuli
hypothesis

| | | | |
-4 =7 0 2 4
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Type | and Type Il errors

* Type | error: probability of rejecting the null hypothesis
when it is true. Usually, it is the significance level of the test.
It is denoted as a

e Type Il error: probability of not rejecting the null hypothesis
when it is false It is denoted as

* Decreasing one type of error increases the other, so in
practice we fix the type | error and choose the test that
minimizes type |l error.
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The power of a test

 The power of a test is the
probability of rejecting the
null hypothesis at a given
significance level when a
specific alternative is true

* For a given significance level
and a given alternative
hypothesis in a given test,
the power is a function of
the sample size

 What is the difference
between statistical
significance and biological
significance?

Power

With enough sample size, we can detect any
alternative hypothesis (if the estimator is
consistent, its standard error converges to zero
as the sample size increases)

t-test: true diff:0.1 std=1 sig.lev=0.05

I I I I I I
0 1000 2000 3000 4000 5000
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The Likelihood Ratio Test (LRT)

* We are working with models, therefore we would
like to do hypothesis tests on coefficients or
contrasts of those models

* We fit two models M, without the coefficient to
test and M, with the coefficient.

* We compute the likelihoods of the two models
(L, and L,) and obtain LRT=-2log(L, /L,) that has a
known distribution under the null hypothesis that
the two models are equivalent. This is also known
as model selection.
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Multiple testing problem

* |n High throughput experiments we are fitting
one model for each gene/exon/sequence of
interest, and therefore performing thousands

of tests.

* Type | error is not equal to the significance
level of each test.

* Multiple test corrections try to fix this
problem (Bonferroni, FDR,...)
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Distribution of p-values

If the null hypothesis is true, the p-values from the repeated experiments
come from a Uniform(0,1) distribution.

Histogram of p

5000
|

4000

3000
1

Frequency

2000

1000
1

Slide by Alex Lewin, Ernest Turro, Paul O’Reilly
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Controlling the number of errors

Not Significant
(don’t reject)

Significant (Reject)

Total

N = number of hypothesis tested
R = number of rejected hypothesis
Ny = number of true hypothesis

# False Negative

# True Negative (Type Il error)

# False positive H# True positive
(Type | error)

N-$ Rejections

# Total Rejections



Bonferroni Correction

If the tests are independent:

P(at least one false positive | all null hypothesis are
true) =

P(at least one p-value < a| all null hypothesis are
true)=1-—(1-a)m
Usually, we set a threshold at a/ n.

Bonferroni correction: reject each hypothesis at a/
N level

It is a very conservative method



False Discovery Rate (FDR)

= number of hypoth tested
R = number of rejected hypothesis
Ny = humber of true hypothesis

# False Negative
(Type Il error)

Not Significant

(don’t reject) N-# Rejections

# True Negative

Significant (Reject) V=1 False positive # True positive R=#H Total
(Type | error) Rejections
Total Ng N-n, N

Family Wise Error Rate: FWER = P(V>1)
False Discovery Rate: FDR = E(V/R | R>0) P(R>0)

FDR aims to control the set of false positives among the
rejected null hypothesis.



Benjamini & Hochberg (BH) step-up method to control
FDR

Benjamini & Hochberg proposed the idea of controlling FDR, and used a
step-wise method for controlling it.

Step 1: compare largest p-value to the specified significance level a:

If po@ > o then don't reject corresponding null hypothesis

Step 2: compare second largest p-value to a modified threshold:

If p2, > a % (m —1)/m then don't reject corresponding null hypothesis

Step 3:
If p2?, > a * (m —2)/m then don't reject corresponding null hypothesis

Stop when a p-value is lower than the modified threshold:

All other null hypotheses (with smaller p-values) are rejected.

Slide by Alex Lewin, Ernest Turro, Paul O’Reilly
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Adjusted p-values for BH FDR

The final threshold on p-values below which all null hypotheses are
rejected is aj* /m where j* is the index of the largest such p-value.

BH:
compare p; to «j*/m <+— compare mp;/j* to «

Can define 'adjusted p-values’ as mp;/j*

But these 'adjusted p-values’ tell you the level of FDR which is being
controlled (as opposed to the FWER in the Bonferroni and Holm cases).

Slide by Alex Lewin, Ernest Turro, Paul O’Reilly



Multiple power problem

 We have another problem related to the power of
each test. Each unit tested has a different test statistic
that depends on the variance of the distribution. This
variance is usually different for each gene/transcript,...

* This means that the probability of detecting a given
difference is different for each gene; if there is low
variability in a gene we will reject the null hypothesis
under a smaller difference

 Methods that shrinkage variance (like the empirical

Bayes in limma for microarrays) deal with this
problem.
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Models for counting
data



Density
0.00010

0.00020

0.00000

Microarray expression data

RG densities

Data are color intensities
RG densities

)

Density
0.15 0.20
| |

0.10
|

0.05
|

0.00
!

0

10000

30000

Intensity

50000 4 6 8 10 12

Intensity

logy, ~N(u;,07;)

Adapted from slides by Benilton Carvalho
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Sequencing data

ERBB2
MYC
ESR1

14
56

23
2 * Transcript (or sequence, or methylation) i in
sample jis generated at a rate A;
* A fragment attaches to the flow cell with a
probability of p; (small)
* The number of observed tags y; follows a
Poisson distribution with a rate that is
proportional to A;p;

The variance in a Poisson
distribution is equal to the
mean

eeeeeeeeeeeee

9l
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Squared coefficient of variation

0.0

0.6

0.4

0.2

Extra variability

technical rep — consistent with Poison

biol. rep — not consistent with Poison

10 100 1000

mean Based on the data of Nagalakshmi et al.
Science 2008; slide adapted from Huber;

Adapted from slides by Benilton Carvalho
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Negative binomial model for
sequencing data

* For subject j, on transcript i:

Yislhis ~ P(Aij) Niglig -~ Poisson ()
« Different subjects have different rates, which Mijluig  ~  Gamma (81 (uij), B2 (pij))
we can model through: Nij  ~ NB (i, a(pi))
Aij ~ ['(«, B) log pi; = s+ Zﬁikwkj
* This hierarchy changes the distribution of Y: k

1
Y;'j ~ NB Q, smooth dispersion-mean relation a
1+ 05

Adapted from slides by Benilton Carvalho 93



Estimating Overdispersion with edgeR

e edgeR (Robinson, McCarthy, Chen and Smyth)

* Total CV%=Technical CV? + Blologlcal CV2
\ Decreases Wi ith Var bIty gen

sequencin ing depth abundance between
replicates

* Borrows information from all genes to
estimate BCV.

— Common dispersion for all tags

— Empirical Bayes to shrink each dispersion to the
common dispersion.
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Estimating Overdispersion with DESeq

 DESeq (Anders, Huber)
e Var = sy + as?p?

Size factor for the
sample

* estimateDispersions()
1. Dispersion value for each gene
2. Fits a curve through the estimates
3. Each gene gets an estimate between (1) and (2).
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T1b

1500 2000 2500 3000

1000

500

Reproducibility

500 1000 1500 2000 2500 3000

T1a

Slide by Wolfgang Huber

96



A few number of genes get most of

cumulative read count

5.0e+06 1.0e+07 1.5e+07

0.0e+00

~ 419

the reads

5000

genes

! l
10000 15000

Slide by Wolfgang Huber i



Effective library sizes

Also called normalization (although the counts are not
changed!!!)

We must estimate the effective library size of each sample, so
our counts are comparable between genes and samples

Gene lengths?
This library sizes are included in the model as an offset (a
parameter With a fixed value)

log pi; = Sj+25z'k$kj
k
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Estimating library size with edgeR

edgeR (Robinson, McCarthy, Chen and Smyth)

Adjust for sequencing depth and RNA
composition (total RNA output)

Choose a set of genes with the same RNA
composition between samples (with the log
fold change of normalised counts) after
trimming

Use the total reads of that set as the estimate.
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Estimating library size with DESeq

DESeq (Anders, Huber)

Adjust for sequencing depth and RNA
composition (total RNA output)

Compute the ratio between the log counts in
each gene and each sample and the log mean
for that gene on all samples.

The median on all genes is the estimated
library size.
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