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Summary

Downstream analysis for extracting meaningful biology :

Normalization and Visualization
Annotation of genomic features to peaks
Feature distribution of binding sites

Feature overlap analysis

Functional enrichment analysis: Ontologies, Gene Sets,
Pathways

Motif identification and Motif Enrichment Analysis

e Differential binding analysis
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Compare, Normalize & Visualize 1

. seqMiner enables qualitative comparisons between a reference set
of genomic positions and multiple ChIP-seq data-sets.

. Useful for comparing and visualizing replicates or conditions.
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Compare, Normalize & Visualize 2
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Peak annotation 1

e ChlPpeakAnno (BioC) map peaks to nearest feature (TSS,
gene, exon, miRNA or custom features)
o extract peak sequences
o find peaks with bidirectional promoters
o obtain enriched gene ontology
o map different annotation and gene identifiers to peaks
e Use biomaRt package to get annotation from Ensembl.
e [Ranges, GenomicFeatures, GO.db, BSgenomes, multtest
(BioC)
e converts BED and GFF data formats to RangedData object
before calling peak annotate function.

Zhu et al., 2010, BMC Bioinformatics



Peak annotation 2

PeakAnalyzer

e A set of high-performance utilities for the automated processing of
experimentally-derived peak regions and annotation of genomic
loci.

® Consists of PeakSplitter and PeakAnnotator.

Biologist' friendly tool.

® Get latest genome annotation files from Ensembl (gtf format) or
UCSC (BED format).

® Map to either nearest downstream gene, TSS or user defined
annotation.

e Determine overlap between peak sets.

® Split peaks to sub-peaks. May be useful for de novo motif analysis.

Salmon-Divon et al., 2010, BMC Bioinformatics.



Peaks distribution across features

ChlPseeker (BioC)

Distribution of transcription factor-binding loci relative to TSS
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Functional Enrichment Analysis 1

GREAT & rGREAT: Genomic Regions Enrichment of Annotations Tool

a Hypergeometric test over genes b Binomial test over genomic regions
Step 1: Infer proximal gene regulatory domains Step 1: Infer distal gene regulatory domains
T Gene transcription start site [T Gene transcription start site
= Ontology annotation m  Ontology annotation
(e.g., “actin cytoskeleton™) (e.g., “actin cytoskeleton”)
= Proximal regulatory domain —  Distal regulatory domain
of gene with/without = of gene with/without »
m s m s T n
Step 2: Associate genomic regions with Step 2: Calculate annotated fraction of genome

genes via regulatory domains

L4 Genomic region associated
s with nearby gene

X Ignored distal genomic region

i r....EI rt%‘_ v Ir Yy Y IE. r Step 3: Count genomic regions
J L)

0.6 of genome is annotated with =

associated with the annotation

— — —— — —

¥ Genomic region

Step 3: Count genes selected by ¥ Yy YYY
proximal genomic regions p—
2 genes selected by proximal genomic regions 5 genomic regions hit annotation =

1 gene selected carries annotation =

Step 4: Perform hypergeometric test over genes Step 4: Perform binomial test over genomic regions
N = 8 genes in genome n = 6 total genomic regions
K_ = 3 genes in genome carry annotation = p.. = 0.6 fraction of genome annotated with n
n = 2 genes selected by proximal genomic regions k. = 5 genomic regions hit annotation n

k. =1 gene selected carries annotation =

P = Prp per(k21 IN=8,K=3, n=2) P =Pryhinam (k251 n=6, p=10.6)
McLean et al., ZU1lu, INAT. biotecrnnoil.



Functional Enrichment Analysis 2
chipenrich
® |[ncludes 3 different enrichment methods:
o Broadenrich - broadpeaks or histone modifications
o Chipenrich -TF narrow peaks 1000-10000’s
o Polyenrich -TF >100,000
® |Includes annotation, and can use custom user provided
annotation
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Welch et al., 2014, Nuc. Acids Res.



Motif detection

Don’t scan a sequence with a motif and expect all sites identified to be
biologically active. Random matches will swamp the biologically relevant
matches! This is a well known problem in motif searching, amusingly called

the "Futility Theorem” of motif finding. Wasserman & Sandelin, 2004, Nat Rev
Genet.

1. PWM based sequence scanning or word search methods. These methods
uses prior information about TF binding sites and therefore can only be
used to detect known Transcription Factor Binding Sites (TFBS).

2. De novo motif identification — Pattern discovery methods:

Word based — Occurrence of each ‘word’ of nucleotides of a certain length is
counted and compared to a background distribution.

Probabilistic- seek the most overrepresented pattern using algorithmic
approaches like Gibbs sampling and Expectation maximization. These
iteratively evolve an initial random pattern until a more specific one is
found.

Use de novo motif calling and alignment to build your own PWMs!
Biostrings & Motiv packages have PFM to PWM conversion methods.



BioConductor motif analysis packages

rGADEM -motif discovery

ViotifRG -motif discovery

MotlV -map motif to known TFBS, visualize logos
motifStack -plot sequence logos

MotifDb -motif database

PWWMenrich -motif enrichment analysis

TFBSTools — R interface to the JASPAR database
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TRANSFAC public

TRANSFAC professional

JASPAR 2014
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Motif Enrichment Analysis

|dentifies over and under-represented known motifs in a set
of regions

The TFs whose DNA binding motifs are enriched in a set of
regulatory regions are candidate transcription regulators of
that gene/promoter/enhancer set.

Without ChlIP-seq, identifying a co-regulated gene sets is
difficult. Use Ontologies, pathways, GSEA etc.

Picking the right background model will determine the success
of the motif enrichment analysis:

O
O
O

All core-promoters from protein coding or non-coding genes etc.
Higher order Markov model based backgrounds

A sequence set similar in nucleotide composition, length and number
to the test set

Open chromatin regions or a shuffled test sequence set.



Motif detection and enrichment analysis
e MEME Suite and MEME-Chip http://meme.nbcr.net

e Given a set of genomic regions, it performs

* Motif detection (FIMO)

* ab initio motif discovery -novel TF binding sites

(MEME, DREME)

* motif enrichment analysis -known TF enrichment
(Centrimo, AME)

* motif visualization (MAST and AMA)
* binding affinity analysis

* motif identification -compare to known motifs

(TOMTOM)

e MEME -expectation maximization (EM) to discover

algorithm Iﬁw.‘.w motif second motif
I [ St n I
ME | Ikl
il | LN
DREME : :
1 i Wt
we |l (L

probabilistic models of DNA-binding by single TFs or TF
complexes.

e DREME -simpler, non-probabilistic model (regular
expressions) to describe the short binding motifs.

Machanick and Bailey, 2011, Bioinformatics


http://meme.nbcr.net/

Motif detection

A

HOMER v4 http://homer.salk.edu/homer/index.html ?@@fr
Large number of (Perl and C++) tools for ChiP-seq analy

Provides both de novo and PWM scanning based motif
identification and enrichment analysis.

User can specify custom background. (Randomly selected, GC or
CGIl matched backgrounds.)

Uses a collection of ChIP-seq derived PWMs or user can specify
PWM.

Can help with Peak annotation, GO enrichment analysis, Extract
peak sequences, Visualization.



Motif Enrichment Analysis
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Meta-Motif Analyzers

http://131.174.198.125/bioinfo/gimmemotifs/

GimmeMotifs: a de novo motif prediction pipeline, especially
suited for ChlP-seq datasets. It incorporates several existing
motif prediction algorithms in an ensemble method to predict
motifs and clusters these motifs using the weighted information
content (WIC) similarity scoring metric.

BioProspector http://motif.stanford.edu/distributions/bioprospector/

GADEM http://www.niehs.nih.gov/research/resources/software/gadem/index.cfm

Improbizer http://users.soe.ucsc.edu/~kent/

MDmodule (included in the MotifRegressor Package) http://www.math.umass.edu/~conlon/mr.html
MEME http://meme.sdsc.edu/

MoAn http://moan.binf.ku.dk/

MotifSampler http://homes.esat.kuleuven.be/~sistawww/bioi/thijs/download.html

Trawler http://ani.embl.de/trawler/

Weeder http://159.149.160.51/modtools/



L9: Identifying direct targets of TFs



Network Biology: reverse engineer regulatory networks
by integrating TF binding and gene expression

. Not all TF binding sites are transcriptionally active. The collection
of transcriptionally active targets of a TF is its regulome.

. Regulomes can be used to “explain” the phenotype under
consideration and understand aspects of biological systems.

. Regulomes in combination with pathway and network modelling
approaches can then be used decipher the networks underlying
phenotypes.

. These networks provide information on connectivity,
information flow, and regulatory, signaling and other
interactions between cellular components.

. BioNet, GeneNetworkBuilder



TF Direct Target detection

Rcade (R-based analysis of ChiP-seq And Differential Expression)

. Rcade is a Bioconductor package developed by Cairns et al., that
utilizes Bayesian methods to integrates ChlP-seq TF binding, with a
transcriptomic Differential Expression (DE) analysis.

. The method is read-based and independent of peak-calling, thus
avoids problems associated with peak-calling methods.

. A key application of Rcade is in inferring the direct targets of a
transcription factor (TF).

. These targets should exhibit TF binding activity, and their
expression levels should change in response to a perturbation of
the TF.



Rcade

* Rcade: R based analysis of ChIPseq And Differential Expression
* Bayesian approach used to integrate ChIP-seq with differential expression to identify
ditect transcriptional targets of transcription factots.

P(DE) P(ChIP)

P(DE and ChIP)




P(B|A)P(A)

P(A|B) = bB)




Rcade

Rcade integrates posterior probabilities of binding (determined via the baySeq package)
with those of differential expression (determined via the limma package).

B = log( )

L — PP

Rcade uses a fully Bayesian modelling approach. In particular, it uses log-odds values (a
measure of probability), or B-values, in both its input and output. The log-odds value is
related to the posterior probability (PP) of an event, as per the formula above.

Priors need to be defined.

A number of output files are generated by Rcade. Usually, the file of interest is
“DEandChlP.csv”, which contains a list of genes most likely to have both DE and ChIP
signals ranked by their B-value.

More on Rcade @ the practical!



Beta

e Three main functionalities:
o to predict whether a factor has activating or repressive
function
o toinfer the factor’s target genes
o to identify the binding motif of the factor and its
collaborators

| Expression data I Binding data |

’ 5 Stage 1: activation and =

l Activation I Lrepressmn pred:ctionj ----- = | Repression |

Upregulate targets Stage 2: direct targets } Downregulate targets
and associated prediction and associated
peaks peaks
-— /_\
UP motifs ] [Stage 3: motif analysis ] | DOWN motifs |

\

Wang, 2013 Nat Protoc. 2013

g

|Dif'ferential motifs|




Network Topology
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Regulomes: from active regulatory elements
to networks

Not all TF binding sites are

transcriptionally active. The collection of B [ e
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KEGG: p53 signalling pathway

P53 BIGNALING PATHWAY
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The TP53 Regulome
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Fine tuning regulation: post-translational
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The Self-Regulatory TP53 Network
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Differential binding analysis 1

e THOR is an HMM-based approach to detect and analyze
differential peaks in two sets of ChlP-seq data from distinct
biological conditions with replicates.

® Performs genomic signal processing and normalization, peak
calling and p-value calculation in an integrated framework.



A - THOR

1 - preprocessing
- fragment size estimation
- GC-content normalization
- input-DNA normalization

- input-DNA subtraction

I

2 - signal normalization
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5 - DP estimate example
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4 - postprocessing
- P-value estimate
- strand lag filter
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C - Evaluation
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1 - biological data
- 4 studies and 13 DPC problems
- evaluation with expression/histones (DCA)
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2 - simulated data
- 12 scenarios: no. of replicates, within
condition variance, ...
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Differential binding analysis 2

* Diffbind is a Bioconductor package by Stark et al., for identifying
sites that are differentially bound between two sample groups.

* It includes functions to support the processing of peak sets,
overlapping and merging peak sets, counting sequencing reads
overlapping intervals in peak sets, and identifying statistically
significantly differentially bound sites based on evidence of
binding affinity (measured by differences in read densities).

Color Key

 More on DiffBind @ the practical!

m w I3 ]

¢« = = = $ % B B % B %

SRRERRRR L
E E BE E E

¥ @ ¢ = L L E 4 4 3 3

FE 5o



