L8: Downstream analysis of ChIP-seq and ATAC-seq data

Shamith Samarajiwa
CRUK Bioinformatics Autumn School
September 2017
Summary

Downstream analysis for extracting meaningful biology:

- Normalization and Visualization
- Annotation of genomic features to peaks
- Feature distribution of binding sites
- Feature overlap analysis
- Functional enrichment analysis: Ontologies, Gene Sets, Pathways
- Motif identification and Motif Enrichment Analysis
- Differential binding analysis
- Integration with transcriptomic data to Identify direct targets
- Network Biology applications
Computational workflow

1. **Experiment Design**
 - Controls, input
 - Replicates

2. **Download from repository**
 - Read Depth
 - Spider

3. **Seq. Read Quality Metrics**
 - Artifactual removal
 - Read Quality

4. **Read Alignment**
 - BWA

5. **Alignment Quality Metrics**
 - Strand cross correlation

6. **Blacklist Removal**
 - MACS2, SPP
 - ChiPQC
 - PCC, IDR
 - FRIP, Gini

7. **Peak Calling**
 - FDR cutoff

8. **QC & replicate reproducibility**
 - Reproducible, High Conf. Peak sets

9. **Direct Target Analysis**
 - Cobra, Rcade
 - Beta
 - Pangaea

10. **Normalization**
 - deepTools2, Thor
 - depth, GC

11. **Feature Distribution and Overlap**
 - ChiPseeker

12. **Peak Annotation**
 - ChiPeakAnno

13. **Get Peak Sequence**
 - Bedtools

14. **Motif detection**
 - Meme, Fimo

15. **Motif Enrichment**
 - MemeChIP, PScanChip

16. **GO enrichment**
 - GREAT

17. **Pathway & Gene Set Enrichment**
 - ChiPEnrich

18. **Differential Binding**
 - DiffBind, Thor

19. **Target Gene Networks**
 - TF Footprinting
seqMiner enables qualitative comparisons between a reference set of genomic positions and multiple ChIP-seq data-sets. Useful for comparing and visualizing replicates or conditions.

Ye et al., 2011, Nucleic Acids Res.
Compare, Normalize & Visualize 2

- **deepTools2** sequence depth or input normalization, GC bias correction
- Plot signal profiles
- Customized heat-maps
- PCA, correlation and fingerprint plots (chip enrichment)

Peak annotation 1

- **ChIPpeakAnno (BioC)** map peaks to nearest feature (TSS, gene, exon, miRNA or custom features)
 - extract peak sequences
 - find peaks with bidirectional promoters
 - obtain enriched gene ontology
 - map different annotation and gene identifiers to peaks
- Use **biomaRt** package to get annotation from Ensembl.
- **IRanges, GenomicFeatures, GO.db, BSgenomes, multtest (BioC)**
- converts BED and GFF data formats to **RangedData** object before calling *peak annotate* function.

Zhu et al., 2010, BMC Bioinformatics
Peak annotation 2

PeakAnalyzer

- A set of high-performance utilities for the automated processing of experimentally-derived peak regions and annotation of genomic loci.
- Consists of PeakSplitter and PeakAnnotator.
- Biologist' friendly tool.
- Get latest genome annotation files from Ensembl (gtf format) or UCSC (BED format).
- Map to either nearest downstream gene, TSS or user defined annotation.
- Determine overlap between peak sets.
- Split peaks to sub-peaks. May be useful for de novo motif analysis.

Salmon-Divon et al., 2010, BMC Bioinformatics.
Peaks distribution across features

ChIPseeker (BioC)

Yu et al., 2015, Bioinformatics
Functional Enrichment Analysis 1

GREAT & rGREAT: Genomic Regions Enrichment of Annotations Tool

Diagram a: Hypergeometric test over genes

Step 1: Infer proximal gene regulatory domains
- Gene transcription start site
- Ontology annotation (e.g., “actin cytoskeleton”)
- Proximal regulatory domain of gene with/without π

Step 2: Associate genomic regions with genes via regulatory domains
- Genomic region associated with nearby gene
- Ignored distal genomic region

Step 3: Count genes selected by proximal genomic regions
- 2 genes selected by proximal genomic regions
- 1 gene selected carries annotation π

Step 4: Perform hypergeometric test over genes
- \(N = 8 \) genes in genome
- \(K = 3 \) genes in genome carry annotation π
- \(n = 2 \) genes selected by proximal genomic regions
- \(k = 1 \) gene selected carries annotation π

\[P = \Pr_{\text{hyper}} (k \geq 1 \mid N = 8, K = 3, n = 2) \]

Diagram b: Binomial test over genomic regions

Step 1: Infer distal gene regulatory domains
- Gene transcription start site
- Ontology annotation (e.g., “actin cytoskeleton”)
- Distal regulatory domain of gene with/without π

Step 2: Calculate annotated fraction of genome
- 0.6 of genome is annotated with π

Step 3: Count genomic regions associated with the annotation

Step 4: Perform binomial test over genomic regions
- \(n = 6 \) total genomic regions
- \(p = 0.6 \) fraction of genome annotated with π
- \(k = 5 \) genomic regions hit annotation π

\[P = \Pr_{\text{binom}} (k \geq 5 \mid n = 6, p = 0.6) \]

Functional Enrichment Analysis

chipenrich

- Includes 3 different enrichment methods:
 - Broadenrich - broadpeaks or histone modifications
 - Chipenrich - TF narrow peaks 1000-10000’s
 - Polyenrich - TF >100,000

- Includes annotation, and can use custom user provided annotation

Welch et al., 2014, Nuc. Acids Res.
Motif detection

• Don’t scan a sequence with a motif and expect all sites identified to be biologically active. Random matches will swamp the biologically relevant matches! This is a well known problem in motif searching, amusingly called the ”Futility Theorem” of motif finding. Wasserman & Sandelin, 2004, Nat Rev Genet.

 1. **PWM based sequence scanning** or word search methods. These methods uses prior information about TF binding sites and therefore can only be used to detect known Transcription Factor Binding Sites (TFBS).

 2. **De novo** motif identification – Pattern discovery methods:

 • **Word based** – Occurrence of each ‘word’ of nucleotides of a certain length is counted and compared to a background distribution.

 • **Probabilistic**- seek the most overrepresented pattern using algorithmic approaches like Gibbs sampling and Expectation maximization. These iteratively evolve an initial random pattern until a more specific one is found.

• Use **de novo** motif calling and alignment to build your own PWMs!

• **Biostrings & Motiv** packages have PFM to PWM conversion methods.
BioConductor motif analysis packages

- rGADEM - motif discovery
- MotifRG - motif discovery
- MotIV - map motif to known TFBS, visualize logos
- motifStack - plot sequence logos
- MotifDb - motif database
- PWMenrich - motif enrichment analysis
- TFBSTools – R interface to the JASPAR database
Position Weight Matrices

PWM conversion:

\[W_{b,i} = \log_2 \frac{p(b,i)}{p(b)} \]
<table>
<thead>
<tr>
<th>TFBS PWM/PFM sources</th>
<th>Reference</th>
<th>Organism</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSFAC public</td>
<td>Matys et al., 2006</td>
<td>Multiple species</td>
<td>v7.0 2005, Not been updated for a while!</td>
</tr>
<tr>
<td>TRANSFAC professional</td>
<td>Matys et al., 2006</td>
<td>Multiple species</td>
<td>v2017</td>
</tr>
<tr>
<td>JASPAR 2014</td>
<td>Mathelier et al., 2014</td>
<td>Multiple species</td>
<td>(656)</td>
</tr>
<tr>
<td>ORegAnno</td>
<td></td>
<td>Multiple species</td>
<td>Curated collection from different sources.</td>
</tr>
<tr>
<td>hPDI</td>
<td>Xie et al., 2010</td>
<td>Human</td>
<td>(437)</td>
</tr>
<tr>
<td>SwissRegulon</td>
<td>Pachkov et al., 2010</td>
<td>mammalian</td>
<td>(190)</td>
</tr>
<tr>
<td>HOMER</td>
<td>Heinz et al., 2010</td>
<td>Human</td>
<td>(1865)</td>
</tr>
<tr>
<td>UniPROBE</td>
<td>Newburger & Bulyk, 2009</td>
<td>Multiple species</td>
<td></td>
</tr>
<tr>
<td>Dimers</td>
<td>Jonawski et al., 2013</td>
<td>Human</td>
<td>(603) predicted dimers</td>
</tr>
<tr>
<td>FactorBook</td>
<td>Wang et al., 2012</td>
<td>Human</td>
<td>(79) ENCODE ChIP-seq motifs</td>
</tr>
<tr>
<td>SCPD, YetFasco</td>
<td></td>
<td>Yeast</td>
<td></td>
</tr>
<tr>
<td>Elemento, Redfly</td>
<td></td>
<td>Drosophila</td>
<td></td>
</tr>
<tr>
<td>FlyFactorSurvey, Tiffin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodoric</td>
<td></td>
<td>Prokaryotic</td>
<td></td>
</tr>
</tbody>
</table>
Motif Enrichment Analysis

- Identifies over and under-represented known motifs in a set of regions.
- The TFs whose DNA binding motifs are enriched in a set of regulatory regions are candidate transcription regulators of that gene/promoter/enhancer set.
- Without ChIP-seq, identifying a co-regulated gene sets is difficult. Use Ontologies, pathways, GSEA etc.
- Picking the right background model will determine the success of the motif enrichment analysis:
 - All core-promoters from protein coding or non-coding genes etc.
 - Higher order Markov model based backgrounds
 - A sequence set similar in nucleotide composition, length and number to the test set
 - Open chromatin regions or a shuffled test sequence set.
Motif detection and enrichment analysis

- **MEME Suite and MEME-Chip** http://meme.nbcr.net

- Given a set of genomic regions, it performs
 - Motif detection (**FIMO**)
 - *ab initio* motif discovery - novel TF binding sites (**MEME, DREME**)
 - Motif enrichment analysis - known TF enrichment (**Centrimo, AME**)
 - Motif visualization (**MAST and AMA**)
 - Binding affinity analysis
 - Motif identification - compare to known motifs (**TOMTOM**)

- **MEME** - expectation maximization (EM) to discover probabilistic models of DNA-binding by single TFs or TF complexes.

- **DREME** - simpler, non-probabilistic model (regular expressions) to describe the short binding motifs.

Machanick and Bailey, 2011, Bioinformatics
Motif detection

- **HOMER v4** http://homer.salk.edu/homer/index.html
- Large number of (Perl and C++) tools for ChIP-seq analysis.
- Provides both *de novo* and PWM scanning based motif identification and enrichment analysis.
- User can specify custom background. (Randomly selected, GC or CGI matched backgrounds.)
- Uses a collection of ChIP-seq derived PWMs or user can specify PWM.
- Can help with Peak annotation, GO enrichment analysis, Extract peak sequences, Visualization.
Motif Enrichment Analysis

Pscan-Chip

- Motif enrichment analysis using PWM databases and user defined background models.
- Optimized for ChIP-seq.
- Ranked lists of enriched motifs.
- Sequence logo’s and motif enrichment distribution plots.

Zambelli et al., 2013 Nucleic Acids Res.
Meta-Motif Analyzers

http://131.174.198.125/bioinfo/gimmemotifs/

GimmeMotifs: a *de novo* motif prediction pipeline, especially suited for ChIP-seq datasets. It incorporates several existing motif prediction algorithms in an ensemble method to predict motifs and clusters these motifs using the weighted information content (WIC) similarity scoring metric.

Improbizer http://users.soe.ucsc.edu/~kent/

MDmodule (included in the MotifRegressor Package) http://www.math.umass.edu/~conlon/mr.html

MEME http://meme.sdsc.edu/

MoAn http://moan.binf.ku.dk/

Trawler http://ani.embl.de/trawler/

Weeder http://159.149.160.51/modtools/
L9: Identifying direct targets of TFs
Network Biology: reverse engineer regulatory networks by integrating TF binding and gene expression

- Not all TF binding sites are transcriptionally active. The collection of transcriptionally active targets of a TF is its **regulome**.
- Regulomes can be used to “explain” the phenotype under consideration and understand aspects of biological systems.
- Regulomes in combination with pathway and network modelling approaches can then be used decipher the networks underlying phenotypes.
- These networks provide information on connectivity, information flow, and regulatory, signaling and other interactions between cellular components.

- **BioNet, GeneNetworkBuilder**
TF Direct Target detection

Rcade (R-based analysis of ChIP-seq And Differential Expression)

- Rcade is a Bioconductor package developed by Cairns *et al.*, that utilizes **Bayesian** methods to integrates ChIP-seq TF binding, with a transcriptomic Differential Expression (DE) analysis.

- The method is read-based and independent of peak-calling, thus avoids problems associated with peak-calling methods.

- A key application of Rcade is in inferring the direct targets of a transcription factor (TF).

- These targets should exhibit TF binding activity, and their expression levels should change in response to a perturbation of the TF.
Rcade

- **Rcade**: R based analysis of ChIPseq and Differential Expression
- Bayesian approach used to integrate ChIP-seq with differential expression to identify direct transcriptional targets of transcription factors.
\[P(A | B) = \frac{P(B | A)P(A)}{P(B)} \]
Rcade

- Rcade integrates posterior probabilities of binding (determined via the baySeq package) with those of differential expression (determined via the limma package).

\[B = \log\left(\frac{PP}{1 - PP} \right) \]

- Rcade uses a fully Bayesian modelling approach. In particular, it uses log-odds values (a measure of probability), or B-values, in both its input and output. The log-odds value is related to the posterior probability (PP) of an event, as per the formula above.

- Priors need to be defined.

- A number of output files are generated by Rcade. Usually, the file of interest is “DEandChIP.csv”, which contains a list of genes most likely to have both DE and ChIP signals ranked by their B-value.

- More on Rcade @ the practical!
Beta

- Three main functionalities:
 - to predict whether a factor has activating or repressive function
 - to *infer* the factor’s target genes
 - to identify the binding motif of the factor and its collaborators

Wang, 2013 Nat Protoc. 2013
Functional Association Networks

Network Topology Analysis
Regulomes: from active regulatory elements to networks

- Not all TF binding sites are transcriptionally active. The collection of transcriptionally active targets of a TF is its **regulome**.
- Regulomes can be used to “explain” the phenotype under consideration and understand aspects of biological systems.
- Regulomes in combination with pathway and network modelling approaches can then be used to decipher the networks underlying phenotypes.
- These networks provide information on connectivity, information flow, and regulatory, signaling and other interactions between cellular components.
KEGG: p53 signalling pathway
The TP53 Regulome

Samarajiwa & Kirschner et al., PloS Genetics 2015
Fine tuning regulation: post-translational modifications

- Phosphorylation
- Ubiquitination
- Neddylolation
- Sumoylation
- Acetylation
- Methylation

Modifying Enzyme
ATM, ATR, DNAPK, CK1, CK2, Chk1/Chk2, etc
Mdm2, Pirh2, COP1, ArfBP1, E4F1, MSL2
Mdm2, FBXO11
PIAS, Topors
CBP/p300, PCAF, Tip60, hMOF
Smyd2, Set7/9, Set8, G9a/Glp, PRMT5
● **THOR** is an HMM-based approach to detect and analyze differential peaks in two sets of ChIP-seq data from distinct biological conditions with replicates.

● Performs genomic signal processing and normalization, peak calling and p-value calculation in an integrated framework.
A - THOR

1 - preprocessing
- fragment size estimation
- GC-content normalization
- input-DNA normalization
- input-DNA subtraction

2 - signal normalization

3 - HMM

4 - postprocessing
- P-value estimate
- strand lag filter

5 - DP estimate example

B - Competing Methods

<table>
<thead>
<tr>
<th>One-Stage DPC</th>
<th>Two-State DPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PePr</td>
<td>MACS2</td>
</tr>
<tr>
<td>DiffReps</td>
<td>DESeq-IDR</td>
</tr>
<tr>
<td>csaw</td>
<td>DESeq-JAMM</td>
</tr>
<tr>
<td></td>
<td>DiffBind</td>
</tr>
</tbody>
</table>

C - Evaluation

1 - biological data
- 4 studies and 13 DPC problems
- evaluation with expression/histones (DCA)

2 - simulated data
- 12 scenarios: no. of replicates, within condition variance, ...

DCA score vs No. DPs graph
Differential binding analysis 2

- **Diffbind** is a Bioconductor package by Stark *et al.*, for identifying sites that are differentially bound between two sample groups.

- It includes functions to support the processing of peak sets, overlapping and merging peak sets, counting sequencing reads overlapping intervals in peak sets, and identifying statistically significantly differentially bound sites based on evidence of binding affinity (measured by differences in read densities).

- More on DiffBind @ the practical!