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e Good Experimental Design
e Optimize Conditions (Cells, Antibodies, Sonication etc.)
 Biological Replicates (at least 3)!!
o sample biological variation & improve signal to noise ratio
o capture the desired effect size

o statistical power to test null hypothesis

e ChIP-seq controls — Knockout, Input (Try not to use 1gG)



What is ChIP Sequencing?

® Combination of chromatin immunoprecipitation (ChIP) with ultra
high-throughput massively parallel sequencing.

e Allows mapping of protein—DNA interactions in vivo on a genome
scale.

® Enables mapping of transcription factors binding, DNA binidng
proteins (HP1, Lamins, HMGA etc), RNA Pol Il occupancy or Histone
modification marks at genome scale.

e The typical ChIP assay usually take 4-5 days, and require approx. 10%~
107 cells.
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Advances in technologies for nucleic
acid-protein interaction detection

e ChlIP-chip : combines ChIP with microarray

technology.

e ChIP-PET : ChIP with paired end tag sequencing

e ChIP-exo : ChIP-seq with exonuclease digestion

I'r

e CLIP-seq / HITS-CLIP : cross-linking immunoprecipitation high throughput

seguencing

e ATAC-seq : Assay for Transposon Accessible Chromatin

e Sono-seq : Sonication of cross linked chromatin sequencing.
e Hi-C: High throughput long distance chromatin interactions



DNA-Protein Interactions
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Statistical aspects and best practices

These guidelines address :

Antibody validation
Experimental replication
Sequencing depth

Data and metadata reporting
Data quality assessment
Replicates

Experimental guidelines:
Landt et al., “ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.” Genome Res.

2012.

Marinov et al., “Large-scale quality analysis of published ChIP-seq data.” 2014 G3

Rozowsky et al., "PeakSeq enables systematic scoring of ChiP-seq experiments relative to controls" Nat
Biotechnol. 2009

Statistical aspects:
Cairns et al., “Statistical Aspects of ChIP-Seq Analysis.” Adv. in Stat Bioinf., 2013.

Carroll TS et al., “Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data.” Front
Genet. 2014

Bailey et al., "Practical guidelines for the comprehensive analysis of ChIP-seq data.” PLoS Comput Biol. 2013.
Sims et al., “Sequencing depth and coverage: key considerations in genomic analyses.” Nat. Rev. Genet.

2014.



Sequencing depth for ChIP-seq

e More prominent peaks are identified with fewer reads,
versus weaker peaks that require greater depth

e Number of putative target regions continues to increase
significantly as a function of sequencing depth

e Narrow Peaks: 15-20 million reads, Broad Peaks: 20-60
million reads

e https://genohub.com/recommended-sequencing-cover
age-by-application/



Why we need input controls
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(a) Fragment density signal tracks for Pol Il and the input-DNA control as well as the target regions that are identified (significantly enriched) as a function of the number
of mapped sequence reads. The same numbers of sequence reads are used for both sample and control. More prominent peaks are identified with fewer reads,
whereas weaker peaks require greater depth. (b) Similar plot with STAT1 and matching interferon-v —stimulated HelLa input-DNA control. {¢) The number of putative
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sequence reads. Although the number of putative targets continues to increase for both Pol Il and STAT1, the number of enriched targets begins to plateau. The number
of Pol Il targets appears to saturate faster than for STAT1 targets. (d) Summarized results of analyzing 9 million mapped Pol Il ChlP-seq sequence reads using one, two
or three biological replicates. We calculate sensitivity and positive predictive values using the targets identified with all the available sequence reads (~ 29 million

uniquely mapped reads) as gold standard positives and the remainder as negatives. Only a marginal gain in positive predictive value at the cost of sensitivity is gained
by using three biological replicates instead of two biological replicates.




Artefact removal 1: Blacklisted regions

eOnce reads have been aligned to the reference genome, “blacklisted
regions” are removed from BAM files before peak calling.

eBlacklisted regions are genomic regions with anomalous,
unstructured, high signal or read counts in NGS experiments,
independent of cell type or experiment.

eThese regions tend to have a very high ratio of multi-mapping to
unigue mapping reads and a high variance of mappability and simple
mappability filters do not account for them.

eThese regions are often found at repetitive regions (Centromeres,
Telomeres, Satellite repeats) and are troublesome for high throughput

sequencing aligners and when computing genome wide correlations.

eThese regions also confuse peak callers and result in spurious signal.



Artefact removal 2

e The DAC Blacklisted Regions aim to identify a comprehensive set of
regions in the human genome that have anomalous, unstructured, high
signal/read counts in NGS experiments, independent of cell line and
type of experiment.

80 open chromatin tracks (DNase and FAIRE data-sets) and 20
ChIP-seq input/control tracks spanning ~60 human tissue types/cell
lines in total used to identify these regions with signal artefacts. These
regions tend to have a very high ratio of multi-mapping to uniquely
mapping reads and high variance in mappability. The DAC Blacklisted
Regions track was generated for the ENCODE project.

e The Duke Excluded Regions contains problematic regions for short
sequence tag signal detection (such as satellites and rRNA genes).

e Grey Lists represent regions of high artefact signals that are specific
to your cell-type or sample, and can be tuned depending on the
stringency required.



Artefact removal 3

Resources:

Where to get Blacklist BED file:

* https://sites.google.com/site/anshulkundaje/projects/blacklists

How they were generated:
e https://docs.google.com/file/d/0B26FxqAtrFDWWGFCAXE1SIFYRmM/edit

ChlPseq Quality control :
e Carroll et al., “Impact of artifact removal on ChIP quality
metrics in ChlP-seq and ChlP-exo data.” Front Genet. 2014

e GreyListChIP
 ChiIPQC


https://sites.google.com/site/anshulkundaje/projects/blacklists
https://docs.google.com/file/d/0B26FxqAtrFDwWGFCdXE1SlFYRmM/edit
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Enables measurement of chromatin structure modifications (hucleosome free
regions) on gene regulation.

Does not require antibodies or tags that can introduce potential bias.
Hyperactive Tn5 transposase is used to fragment DNA and integrate into active
regulatory regions.

During ATAC-seq, 500-50,000 unfixed nuclei are tagged in vitro with sequencing
adapters by purified Tn5 transposase.

Can also detect nucleosome packing, positioning and TF footprints.

JD Buenrostro et al, Nature Methods, 2013.



ATAC-seq

Two-step protocol

o Insertion of Tn5 transposase with
adaptors

o PCR amplification

Needs ~500-50,000 cells

Paired-end reads produce information

about nucleosome positioning.

Insert size distribution of fragments has

a periodicity of ~200bp, suggesting that

fragments are protected by multiplies of

nucleosomes

Different fragmentation patterns can be

associated with different functional

states (eg. TSSs are more accessible than

promoter flanking or transcribed

regions)
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Workflow of ATAC-seq data processing

Sequencing

FastQC, Cutadapt, Trimmomatic etc.
BWA, Bowtie
MACS2, Zinba etc.

ChIPQC, IGV



Differences from ChlIP-seq data processing

® Use the fragment length for smoothing when calling peaks with MACS2
o MACS2 documentation says when using DNAse-seq type data:
m “.. all 5 ends of sequenced reads should be extended in both
direction to smooth the pileup signals. If the wanted smoothing
window is 200bps, then use '--nomodel --shift -100 --extsize 200”
o --nomodel: don’t build shifting model
o --shift: when this value is negative, ends will be moved toward 3'->5'
direction
o --extsize: extend reads in 5’->3’ direction to fix-sized fragments
o Use the fragment size for smoothing - you can calculate it with ChIPQC
® Remove mitocondrial reads
o A large fraction of ATAC-seq reads map to mitocondrial genome (up to
40-60%) that you will want to remove
o Blacklisted regions contain the mitocondrial genome
® Normalisation across samples might be needed
o Efficiency of the ATAC-seq protocol in assaying open regions might be
different based on how much transposome gets into nuclei
o For a solution of normalisation see: Sarah k. Denny et al, cell, 2016.



http://www.cell.com/cell/pdfExtended/S0092-8674(16)30655-9

Peak Calling
* |dentifies TF binding sites

* Count based - Define regions. Count the number of reads falling
into each region. When a region contains a statistically significant
number of reads, call that region a peak.

* Shape based - Consider individual candidate binding sites. Model
the spatial distribution of reads in surrounding regions, and call a
peak when the read distribution conforms to the expected
distribution near a binding site.
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