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® BULK VS SINGLE CELL RNA-SEQ
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® BULKVSSINGLE CELL RNA-SEQ

1. mMRBNA: TruSeqg RNA-Seq (Gold Standard)
* ~20,000 transcripts

More when consider splice variants / isoforms

* Observe 80-95% of transcripts depending on
sequencing depth

2. Low input methods ~3000 cells / well
* 4000-6000 transcripts per sample

Limiting to transcripts observed across all samples

* Observe 20-60% of the transcriptome

3. Single Cell Methods
« 200 -10,000 transcripts per cell

* Observe 10-50% of the transcriptome

« Many transcripts will show up with zero
counts in every cell. (even GAPDH)

* |f you only looked at transcripts observed in
all cells numbers drop dramatically.

Source: Sarah Boswell, Harvard Medical School, September 2020




® BULK VS SINGLE CELL RNA-SEQ

Deep RNA-seq | Sort-seq | Low input | scRNA-seq
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Source: Sarah Boswell, Harvard Medical School, September 2020
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Disadvantages of scRNA-seq

- Dropouts and noisy data

- Lowly expressed genes
might be undetected

- Samples will contain
doublets

- Replicates without batch
effect are unlikely

- Expensive



APPLICATIONS

] naturemedicine

Letter | Published: 08 June 2020

A single-cell atlas of the peripheral
immune response in patients with severe
COVID-19

Aaron J. Wilk, Arjun Rustagi, Nancy Q. Zhao, Jonasel Roque, Giovanny J. Martinez-

Colédn, Julia L. McKechnie, Geoffrey T. lvison, Thanmayi Ranganath, Rosemary Vergara,

LETTER

hittps/fdoiorg 10,1028/ =41586-018- 03945

A single-cell atlas of the airway epithelium reveals
the CFTR-rich pulmonary ionocyte

Lindsey W. Plasschaert-37, Rapolas? ilionis™*, Rayman Choo- Wing®-%, Virginia Savova®s, Judith Knehr*, Guglielmo Roma®,
Allon M. Klein®™ & Aron B. Jaffel-5+

J nature

Article | Published: 20 February 2019

A single-cell molecular map of mouse
gastrulation and early organogenesis

Blanca Pijuan-Sala, Jonathan A. Griffiths, Carolina Guibentif, Tom W. Hiscock, Wajid

Jawaid, Fernando J. Calero-Nieto, Carla Mulas, Ximena |barra-Soria, Richard C. V.
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TECHNOLOGIES

® Figure 1: Scaling of scRNA-seq experiments.
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®_ HISTORY AND PROGRESS

454

‘ Publications using 10x Genomics
366
LETT, time g 285
ER wenen 5/12 6/13 9/14 6/15 4/16 6/16 11/16 ;
Single -cell transcriptomics reveals bimodality in 2013, 18 cells ] = =] = aE—a -
GIpueisn sad spiicieg In s ool 18 1500 50K 100K S00K 1.3mM 2.7M g 198
T ST Ll e e —— # cells at Klarman Cell Observatory §
o 146
ARTICLE - 2 .
Single-cell RNA-seq reveals dynamic 2014, 1700 cells g i
paracrine control of cellular variation sy,
RTINS ST TR I R T , & 7 2
. 2016 2017 2018 2019
2015, 45,000 cells
Parsliel Gerome-wite Expresscn Profilerg
o Celta Using Narwaitor Drcgsots
s e e e - PubMed search for ‘scRNA-seq’
WMWM 2016, 200,000 cells RESULTS BY YEAR
of Pocled Screens
i e e e e 4,
2017, 1.3 million cells (10X genomics)
Source: Introduction to scRNASeq, Timothy Tickle & Brian Haas, Broad Institute, 2017 I
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Good sample
preparation is
key to success!
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WORKFLOW

Single Cell RNA Sequencing Workflow
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® SAMPLE PREPARATION

- Understand well the nature of the sample (sampling conditions, preparation, purity)

- ldentify the source of technical difficulties in order to resolve them first

- Practice your sample preparation, optimise the protocol well, do not rush to the final experiment

- A well planned pilot experiment is essential for evaluating sample preparation and for understanding the
required number of cells.

- You need your cells to be highly viable (>90-95%), have no clumps and no debris. Cell membrane integrity
is a must!

- Free-floating RNA will make analysis more challenging

- Be cautious about FACS (especially with more fragile cells). If FACS necessary for enrichment, remember
that time is crucial factor

- Count with haemocytometer or cell counter (Countess Il Automated Cell Counter) —do not trust sorter
counts

- Fixation and cryopreservation are not compatible with many technigues —and generally should be avoided
if possible (Nuc-seq might be a solution for frozen samples)
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o [IS5UE PRESERVATION

Research | Open Access ‘ Published: 10 May 2021

Research ‘ Open Access | Published: 02 June 2020

. Systematic assessment of tissue dissociation and
storage biases in single-cell and single-nucleus RNA-
seq workflows

Elena Denisenko, Belinda B. Guo, Matthew Jones, Rui Hou, Leanne de Kock, Timo Lassmann, Daniel

Genome Biology 21, Article number: 130 (2020) ‘ Cite this article
14k Accesses ‘ 39 Citations ‘ 40 Altmetric | Metrics

Immune Netw. 2020 Aug; 20(4): e34. PMCID: PMC7458795
Published online 2020 Jul 15. doi: 10.4110/in.2020.20.e34 PMID: 32895621

Effects of Cryopreservation and Thawing on Single-Cell
Transcriptomes of Human T Cells

Jeong Seok Lee, " T Kijong Yi,""T Young Seok Ju,"? and Eui-Cheol Shin®'2

» Author information » Article notes » Copyright and License information  Disclaimer

Article ‘ Open Access ‘ Published: 23 July 2019

DMSO cryopreservation is the method of choice to
preserve cells for droplet-based single-cell RNA
sequencing

Christian T. Wohnhaas, Germéan G. Leparc, Francesc Fernandez-Albert, David Kind, Florian Gantner,

Coralie Viollet, Tobias Hildebrandt & Patrick Baum

Scientific Reports 9, Article number: 10699 (2019) ‘ Cite this article
14k Accesses | 20 Citations ‘ 49 Altmetric ‘ Metrics
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Cryopreservation of human cancers conserves tumour
heterogeneity for single-cell multi-omics analysis

Sunny Z. Wu, Daniel L. Roden, [...]Alexander Swarbrick &

Genome Medicine 13, Article number: 81 (2021) | Cite this article

1757 Accesses ‘ 34 Altmetric | Metrics

Fixed RNA Profiling Kit
Coming 2H 2021

Genome Biol. 2020; 21: 1. PMCID: PMC6937944
Published online 2019 Dec 31. doi: 10.1186/513059-019-1906-x PMID: 31892341

scRNA-seq assessment of the human lung, spleen, and esophagus
tissue stability after cold preservation

E. I‘\f1adissoon,‘f’”'2 A. Wilbrey-Clark.”! R. J. Miragﬂ,1 K. Saeb-Parsy,® K. T. Mahbubani,® N. Georgakopoulos,
P. Harding, " K. Polanski," N. Huang," K. Nowicki-Osuch,* R. C. Fitzgerald,* K. W. Loudon,® J. R. Ferdinand,?
M. R. C\atwonhy,5 A Tsingw‘1 S.van Dong@,1 M. Dabrowska,' M. Patel," M. J. T. Stubbingto_n,m6

S.A. Teichmann‘1 0. Steqle,2 and K. B. MeyerE1

Research article ‘ Open Access ‘ Published: 09 November 2020

Single-cell transcriptome conservation in a comparative
analysis of fresh and cryopreserved human skin tissue:
pilot in localized scleroderma

Emily Mirizio, Tracy Tabib, Xinjun Wang, Wei Chen, Christopher Liu, Robert Lafyatis, Heidi Jacobe &

Kathryn S. Torok &

Arthritis Research & Therapy 22, Article number: 263 (2020) | Cite this article

2256 Accesses | 4 Citations | 4 Altmetric | Metrics



® METHODS

. 1) Cellsin wells, traps and valves (nanowell, Flow sorting, CellenOne,
Fluidigm C1, SmartSeq)
- Screen for and retrieve single cells of interest Passive wells Active pumps and valves
- Enrich for rare cells with decided properties
- Control the cellular microenvironment
- E/Ionlltor and cqntrol ce‘II—ceII‘ |ntera§t|ons %Q = (”’"‘K
- Precise/extensive manipulation of single cells W*Q:‘“

—-lo—-

2) Droplets (Drop-seq, 10x Genomics)
- Introduce distinct ‘packets’ of reagents to single cell (e.g. barcodes)
- Perform amplification on individual cells
- Sort large population of single cells

3) Combinatorial indexing (SCl-seq, SPLiT-seq) Recee. I L
. . wer 0000000000000 000 8 o
- Economic use of reagents for cell separation D oo (SIe]ele lQ—\Q( W20

- Efficiency of handling larger population than Drop-seq I :22212;&2“““""““”"““‘““

il Secreting T cell
- Maintain complexities of population without bias from droplet or well Rehinpereae
eted analyte (IL-10)
11{ Secondary Ab labeled with fluorescent
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® MORE CELLS OR MORE GENES?

g SMART-seq2
droplet-RNAseq
—
cells
SMART-seq?2 Droplet-RNAseq
- 100 cells - 10000 cells
- Full-length libraries - 50k reads per cell
- 1M reads per cell - 3’/5 bias
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- Required number of cells increases with complexity of the sample.

- You can always re-sequence your samples.

- Number of reads will depend on biology of sample
INSTITUTE - Cell-type classification of a mixed population usually requires lower read depth



® SMART-SEQ2/3/4 OVERVIEW

,#ﬁw 5 polyA 3' KEY -
. ° SMART-Saq v4 -y ::,gﬁa:hm?;g;
Oligonucleotids First-strand synthesis APz v4 Oligo
Ter:pl;m switching = !_IFH-EE Index
. . ana axiansion B Tn 2
Developed for single cell but can performed using R with bocked mes
total RNA PCR Primer HIA | Primer 1A = Egversa Index
‘_ l
. —— r— - Double-stranded
eSelects for poly-A tail. eONA
Samples pooled
eFull transcript assay. () Tansposon complenes
and TnEFZ sequences)
*Uses template switching for 5" end capture. - - o~ .
e———l aE T N
eStandard Illumina sequencing. _—- e
. . . =_- Tr!RPI and
ePlate-based solution so labour intensive, slow and pmers
costly (~S12/cell) I . {0 TnRP1 and P7
(no TnRP2 primers nor p;ﬁ;:gg;:gﬁagg;-. and Reverse Index
SMART A primers) ! ! to

b
Eaa— .
- ———_ .

5’ tagged reads

r3— Digital count c
5 . ellno. 1 2 3 4 ..
NN RNA A7 —m-m—@ of ransoripts SN (e [60 6 197 ..
— N 5" isoform structure = e e 0 2 1770...
cDNA 2
N Internal reads o |lm— === g gg ;, S}
Optimized - o T m

TS-RT E—0—0—0 Full isoform

. Single-cell digital isoform counts matrix
[O——{—{HH1 reconstruction



® SMART-SEQ2/3/4 + MOSQUITO LV

. . FACS sorting on 96/384-well plates
RBCyee (000000000
ysis
i 000000000
- HHHH
Staining. 000000000
s 000000000 |
™
|
* * ‘ FACS Fluidigm Cl-autoprep system
fessssss (LY 1943
. - . ; o £ £114E
Single cell RNA-Seq . . . .
o - Mosquito LV makes assay miniaturisation

- ; simple, leading to significant savings on
Dissecton 'ggfglt%" , F?\Z%Svgomg ARV precious reagents and time.
M .Zn o ; ' - Mosquito LV offers highly accurate and precise
W ® 22 .‘.::: u multichannel pipetting from 25 nLto 1.2 L.
used» CANCER | CAMBRIDGE > i
o RESEARCH | INSTUTE @ 204 odn 2 SmartSeq2 cost reduced from $12 to $4 per
Ahls UK £ cell
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Cell suspension is aspirated into a
glass capillary

Generation of drops on demand, in
air

Thanks to automated imagining,
cellenONE tracks cells and
determines if upcoming drops will
contain or not a single cell

Drops containing single cells are
dispensed into selected targets,
drops without cells or with more
than one cells are dispensed into
recycling tube
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tissue DLP+ on 1000s
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and cycle state

cellmine

3

Resource of >50,000
single-cell genomes
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merge
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phylogenetic analysis:
CNV/SNV/breakpoint




‘ SPLIT- SEQ OVERVIEW (PARSE BIOSCIENCES)

SPLiT-Seq the Movie

Inthe first round of barcoding, fieed cell samples are distributad The third-round barcode |5 appended with another
nte 28 wells, and cORA s generates with an in-cell reverse round of in-cell ligaticn.

transcription (KT} reaction using wall-spacific barcoded primars.
Calls from sample w J I
2 = g

|Ligation)
(Reverie l N0
trarscription) :\.&\! v
A
Pool I
| Cells from aach well a2 pooled back togethar. et X
e
Video available at: https://sites.google.com/uw.edu/splitseq bool |
r Alter three rounids of barcoding, the cells are pooled and splitinta
: LA & distinct populations we term sublibraries, The user <an choose
f X I i the number of cells in each sublibrary to controd the depth of
1 Sk, sequencing, Colls will not be pocted again after this step. After this
cells \S ; 3 final split cells are lysed and the barcoded cDHA T solated. A
fourth sublibrary-specific barcode i introduced by PCR to each
cfA mokeoule.
Samg‘es 53'20’9 52'7" 9‘:;5 '—I 2,000 Cells are than distributed into 55 walls, and an in-coll lgatian
Starting 1- ells reaction appends asecond well-specific barceds ta the cDMA. a
S > o9 _
els 2 202, o P Split v
+ _, —9—0 8 sublibranres e / l
el o oo i ::' \. :. split L wsspn
oels o? :.. / L '& "[-."\."\.".-' Lo o T

o

UP"“’O 099 {Ligation] e | il .-H
varcoded cells 5] 12,500 . iq[s el ,,..d;‘gf' L A ARV
colls Uptos ‘J‘ \!

sublitrasies with After sequencing. each nghe cell transcriptome s assembled by

combining reads cantaining the same four-barcode combination.

Choosze the numboer of cells amplicars ready
per sublorary to contrel 0 be sequenced o ‘fn-:t 29:5
sequencing depth, Pool
— - Cell 1
[
Storage Storage of
of samples sublibraries l = mm= celz
, ) —==== cas
Fixation Barcoding Library Prep ]
30-60 min Thrs 15days

i o CANCER CAMBRIDGE
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- Time flexibility — single experiment for samples collected on different dates (up to 6months storage)
- Noinstrument required for experiment. Computational pipeline available
- Upto 48 samples/ 100k cells in total — kit has to be used at once
- Retail price of $9,800 per kit (+fixation kits)
Doublet rate of 0.27% per 1000 cells (3.4% per library)
- No 3’/5 bias — random hexamers method
- Median genes detection of about 12,000 genes
- Works with any species, any sizes of cells/nuclei & results in lower background noise


https://sites.google.com/uw.edu/splitseq

®_ DROP-SEQ OVERVIEW

- Moved throughput from hundreds to Ce“
thousands.

- Droplet-based processing using microfluidics

- Nanoliter scale aqueous drops in oil.

Highly Parallel Genome-wide Expression Profiling of
Individual Cells Using Nanoliter Droplets

~ 1 Graphical Abstract Authors
3 E 4 d Evan Z. Macosko, Anindita Basu, ...,
- Bead based (STAM PS) . Drop-seq single cell analysis Aviv Regev, Steven A. McCarroll
m | Cro p art | C | es emacosko@genetics.med.harvard.edu
: e @ (E.Z.M.),
. . Distinctl .
- Cell barcodes use split-pool synthesis. FeEE mocarroll@genetics.med.harvard.edu
. . beads % (S.A.M.)
- Uses UMI (Unique Molecular Identifier)
L * * B % @ In Brief
- Chance to have two cells within one droplet @ Conturng s _
@ apturing single cells along with sets of
: uniquely barcoded primer beads together
g} in tiny droplets enables large-scale,
= highly parallel single-cell transcriptomics.

Applying this analysis to cells in mouse
retinal tissue revealed transcriptionally

J/.'F ) ’/."_%\\\ b :l i_é ,*» distinct cell populations along with
\\ /| —_— K‘/l —> ; E ; ; molecular markers of each type.
-. .. -
L] * ‘ -
e CANCER CAMBRIDGE 1000s of DNA-barcoded single-cell transcriptomes
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“ UMI = UNIQUE MOLECULAR IDENTIFIERS

After PCR enrichment, without UMIs, one can not distinguish if multiple copies of a
fragment are caused by PCR clones or if they are real biological duplicated.

By using UMIs, PCR clones can be found by searching for non-unique fragment-UM|
combinations, which can only be explained by PCR clones.

When performing variant analyses, these falsely overrepresented fragments can result in
incorrect calls and thus wrong diagnostic findings

Molecule Type UMIs __ |Reads
i) s =) =_ = — ® 6
2 2 UMIs detected
H =. _{ 0 1 UMI missed
I 9 7
Sample Library @ 5 3 UMIs detected
Label with UMIs Ampln‘y Sequence & Count ® 1 1 phantom UMI

L CANCER | CAMBRIDGE
33 RESEARCH | INSTITUTE
Ahls UK



®. 10X GENOMICS
OVERVIEW

- Droplet-based similar to Drop-Seq, 3’ or 5 mRNA

v3 Gel Bead

- In contrast to Drop-seq, where solid beads are used for RNA
capture, 10X uses soft hydrogels containing oligos. These enable
“single Poisson loading” leading to capture of >60% of input cells.

- Standardized instrumentation and reagents (unhackable so no
customisation or control)

- Very easy to use and less processing time

- More high-throughput scaling - 8 samples can be processed
simultaneously with up to 10000 cells captured per sample

- The doublet rate increases with number of cells loaded

- CellRanger and CellLoupe software are available and user friendly

% CANCER CAMBRIDGE
RESEARCH | INSTITUTE
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® 10X GENOMICS LIBRARIES

. Chromium Single Cell V(D)J Dual Index Library
Chromium Single Cell 3' Gene Expression Dual Index Library

Sample 18?%%115& Sample
Sample r?%‘{l&gﬂ Sample Index (i5:10) i \ \ J c Index (i7:10)
Index (i5:10) fboss i Index (i7:10) e
I [ e e e
_ P5 TruSeq 10x  UMI TSO R:eac 2:90 TruSeq
! Read 1 BC Insert Read 2
P5 TruSeq Read 1 X UMI Poly(dT)VN < TruSeqRead 2
Ba Read 2:90
Insert
Chromium Single Cell 3' Cell Surface Protein Dual Index Library Chromium Single Cell 5' Gene Expression Dual Index Library
Sample Read 1:28 Sample
Index (i5:10) 10xBC+UMI\ Index (i7:10)
I B T Sample o4 Sample
I BN e el - i
‘ T —
P5 Nextera Read 1 )X UMI  Capture Feature TruSeq Read 2
(Read 1N) Tl P simiid R rcade e B C— ———
. = - P5 TruSeq 10x UMI  TSO Read 290 TruSeq
Read 2:90° Read 1 E insert  Read 2

Source: 10x Genomics

— = Sequencing Read Number of cycles

S— Readl 10x Barcode Read (Cell) 28bp

— — + Randomer Read (UMI)

CB UMI poly(T) mRNA fragment i7 index Sample index read 10bp
°;,o' CANCER CAMBRIDGE i5 index Sample index read lObp
*R RESEARCH | INSTITUTE

’ow UK Read?2 Insert Read (Transcript) 90bp



® ULTIOMICS AGE

‘ TECHNOLOGY FEATURE | 19 July 2021 | Correction 21 July 2021

Single-cell analysis enters the
multiomics age

A rapidly growing collection of software tools is helping researchers to analyse multiple

Replacing the Legacy Toolkit Across Biology

RNA T- and B-Cell Receptors

* Microarrays * Bulk RNA-Seq
*gPCR/PCR «ISH

huge ‘-omics’ data sets.

Immune cell profiling

* Flow cytometry
=NGS methods Jeffrey M. Perkel

CRISPR Screening Chromatin

Epigenomics

CRISPR functional genomics

« Liquid handlers * ChIP and NGS-based methods

« High content imaging \\{ Genome
Proteins Point mutation

*NGS - * Western blots *FACS

« Capillary electrophoresis (CE) === *Affinity columns * CyTOF

* Protein microarrays « IHC/IF
« Highly Multiplexed

Imaging
* Microscopy

! scM&T-seq
* Microarrays Eplgenome
DNA methylation N
Chromatin accessibility 32?;2;222
SNARE-seq

10X

BENOMICS

© 10X GENOMICS, INC. 2021 14

Transcriptome

/7~ CITE-seq
REAP-seq /

T-ATAC-seq

Proteome ) Spatial information

uiA%s CANCER | CAMBRIDGE
RESEARCH | INSTITUTE Cell surface protein

"’.... % UK KashimaY et al. Exp Mol Med 52, 1419-1427 (2020)



CITE-SEQ

‘ - Cellular Indexing of Transcriptomes and

Epitopes by Sequencing

- CITE-seq uses DNA-barcoded antibodies to

d
NK&
. -).i.!"- bt
convert detection of proteins into a quantitative, "'i 'V. .

sequenceable readout

Antibody binding, Single cell droplet encapsulation
washing cells oil

5 Cells
‘&_

[ ]
°
Beads Oil

2 b

mRNAs and antibody-oligos
hybridize to RT oligos and
are indexed with cell barcode

1111111111111

TTTTTTTTTTTTT

TTTTTTTTTTTTT

ﬁﬁ TTTTTTTTTTTTT

' DC CD56
¥ cD14 mRNA
« Mono CD16
Mono S
2 o3
Y
®Ery % I
& %
&
o~
) 2
%
tSNE1
CD16 CD19 CD34
mRNA ¢ mRNA ﬁ MRNA
\Q_"‘\ A Ay
Size selected cDNA 3 ™ Hig
for standard library prep
— — L
——CTTTTTTTT  m— ADT g ADT '
| oA
I A AR RAARAR B -
Size selected antibody
oligo products for further .Hig
library prep
NN AARAARARRE L Lov

uiA%s CANCER | CAMBRIDGE
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Source: Stoeckius et al. Nat Methods. (2017)
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CITE-SEQ

TotalSeq™-A Poly(dT)-based Systems Celt
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o CELLHASHING

. Reduces cost of running multiple samples by adding hashtag oligos and Genotype-free demultiplexing of pooled single-cell
. . . . RNA-
pooling into single channel of 10x chip (10x CellPlex or TotalSeq e
i i Jun Xu®, C;utlm Falconer®, Quan Nguyen®, Joanna Crawford®, Brett D.
antlbOdleS) McKinnon ¢, Sally Moxtlockb Alice Pel)"l\fg"‘ Alex W. He\uttfgﬁ' Anne

Senabouth?, Nathan Palpant®?, Han C hulh Stacey Andersen®’, Grant W.

Labeling Pooling Analysis Montgomery®®, .]oseph Powell®4, Lachlan Coin®®:*

‘| nature methods

Article | Published: 17 June 2019

| Semples habeling o O Chanmal MULTI-seq: sample multiplexing for

_ _ _ single-cell RNA sequencing using lipid-
Allows overloading as by sequencing tags alongside the cellular tagged indices
transcrlptome’ We can aSS|gn eaCh Ce” to ltS Sample Of Orlgln’ and Christopher S. McGinnis, David M. Patterson, Juliane Winkler, Daniel N. Conrad,
rObUStly |dent|fy dOUbletS Orlglnatlng from mU|t|p|e Samples Marco Y. Hein, Vasudha Srivastava, Jennifer L. Hu, Lyndsay M. Murrow, Jonathan S.

- Weissman, Zena Werb, Eric D. Chow & & Zev J. Gartner &

Nature Methods 16, 619-626(2019) | Cite this article

% .. .'.'.:.. -.:". 15k Accesses | 27 Citations |85 Altmetric | Metrics
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Gel Beads

®. 10X ATAC

Chromium Single Cell ATAC libraries comprise double stranded DNA fragments
which begin with P5 and end with P7. Sequencing these libraries produces a standard

Insert Read 2N

Ilumina® BCL data output folder. i78
i5:16 bp ISﬂaE:Iflr:
Read 1N ™ \
I —
Eassss S e 0 :
PS B T Read IN Insert < Readan Read 2N Nuclei
Barcode Enzyme
Sequencing Description Number of Inside Individual GEMs
Read cycles ; L L Read 2N
Readl Insert Sequence 1IN 50bp
i7 index Sample index read 8bp e — S—
. . Denaturation, Linear Amplification |
i5 index 10x Barcode Read (Cell) 16bp Ty SO
Read?2 Insert Sequence 2N (opposite  50bp { Linear Amplification Product
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®. 10X MULTIOME (RNA+ATAC

Profiling Different Modalities To Gain Deeper Insights  Dive Deep Where It Matters
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. subcluster 1 — Memory B cells
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Naive B cells

Source: 10x Genomics



® . SPATIAL TRANSCRIPTOMICS
vAZ

© L ]
L J
° ... Q I::L":{::z‘:‘::::::;:::::‘:’;::“ Annotation directly on H&E image Captured H&E image from the microscope
) O ® .
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o* b ) s e o Source: 10x Genomics
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Spatial heterogeneity o, & Developmental spatial
in diseases a"fanscr“"o blueprint
Trends in Biotechnology

Figure 3. Applications for Spatially Resolved Transcriptomics. Three primary kinds of hot issues can be resolved by
spatially resolved transcriptomics: left, discovering spatial heterogeneity of diseases; middle, establishing spatial
transcriptome atlases for the human body; and right, delineating an embryonic developmental and spatial blueprint.
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® SPATIAL TRANSCRIPTOMICS

IF + Visium IF + Visium

‘ Immunofluorescence (IF) Visium Gene Expression Gene Expression Whole Transcriptome

Rbfox3 NeuN + Rbfox3

Microscope Imaging Readout Sequencing Readout Microscope Imaging + Sequencing Readout

Feature Barcode Correlates with Immunofluorescence

The Challenge of FFPE Samples

Immunofiuorescence on Visium
l Feature Barcode Antibody-Barcode counts I Gene expression clustering

Standard Visium

Fresh Frozen
FFPE tissue preservation
degrades RNA

1;““:;;\ g
(AR A Blolegend' With FFPE
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« EXPERIMENTAL DESIGN

Confounded design Balanced design
T 9PY T vY
§ OO § 3 : ooy !
oog oog oog 000 o ). ° 3
< e s 090 238 @8/ 233 -+

Plates

| g -

Sequencer lanes Sequencer lanes

Source: Baran-Gale et al. Brief Func Genomics. 17 (4):233-239. (2018)
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I. Tissue Procurement

Source: Key considerations:
- Biological variation
- Sampling/handling variation - Technical replicates
- Duration of sourcing

- Primary human
- Model organism
- Cell culture

Il. Tissue Dissociation
__ @@ Method:

@ Key considerations:
0 “@@ @ - Mechanical mincing - Experimental consistency
< ®)_<> - Enzymatic digestion - Shortest duration

Study design:
- Biological replicates

- Cell number calculation
- Workflow optimization

Quality control:
- FACS analysis
- qPCR for marker genes

() @ - Automated blending - Highest cell/nucleus quality - Imaging of cell integrity
N0 - Microfluidics devices - Representation of all cell types - RNA quality (RIN)

lll. Cell Enrichment (optional)

Method:
® @

- Dead cell removal

IV. Single Cell RNAseq Platform
Method:
- Droplet-based
g0eqW - Tube-based after FACS
: - Microwell-based
- Microfluidics-enabled

V. Library Sequencing
SIS Method:
FaZensl - lllumina NGS
SIS - Compatible with cDNA library
<

VI. Computational Analysis
3 Key considerations:

D - Differential centrifugation, sedimentation, filtration
@@ ® . Antibody labeling for positive/negative selection
@ - Flow cytometry or bead-based enrichment

Key considerations:

- Additional handling

- Longer duration

- Loss of RNA quality

- Transcriptome changes

Key considerations:

- Cell throughput and handling time

- Gene coverage and cell type detection
- Whole transcript versus 3’end counting
- Imaging capability for doublet detection

Sequencing depth considerations:

- 3’end counting: low depth ~50K RPC

- Whole transcript: high depth ~1M RPC

- Alternative splicing: ~20-30M RPC

- Iterative optimization for biological system

Sample Batch correction approaches:

- Separation of batch and condition - Céll Hashing
- Technical vs. biological variation - Demuxlet

- Canonical correlation analysis (CCA)
- MAST

Source: Nguyen QH et al. Front Cell Dev Biol 6:108. (2018)




® WHAT PLATFORM SHOULD | USE?
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Choose protocol based on:

- Throughput (number of cells per reaction )

- Sample of origin

- Cost / Labour / Time limitations

- Gene body coverage: 5’/ 3’ biased or full-length?
- UMI vs no-UMI

- Sequencing depth per cell

Examples:

If you sample is fairly homogeneous — bulk RNAseq

If your sample is limited in cell number — plate-based method

If you want re-annotate the transcriptome and discover new isoforms — full-length
coverage (SMART-seq2)

If you are looking to classify all cell types in a diverse tissue - high throughput

If you have only archival human samples — nuclei isolation
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USEFUL RESOURCES: (

* Haque et al. A practical guide to single-cell RNA-sequencing for
biomedical research and clinical applications. Genome Med.
2017;9(1):75.

* Single cell course by Hemberg Lab, Wellcome Sanger Institute
(http://hemberg-lab.github.io/scRNA.seq.course/index.html)

* Tabula Muris (https://tabula-muris.ds.czbiohub.org/)

* Human Cell Atlas (https://www.humancellatlas.org/)

* 10x Genomics demonstrated protocols for sample preparation
(https://support.10xgenomics.com/single-cell-gene-expression/sample-prep)

*  Worthington Tissue Dissociation Guide
* (http://www.worthington-biochem.com/tissuedissociation/default.html)

* Broad Institute Single Cell Portal
(https://singlecell.broadinstitute.org/single_cell)

* List of software packages for single cell data analysis
(https://github.com/seandavi/awesome-single-cell)

* SPLIT-seq (https://sites.google.com/uw.edu/splitseq)

* CITE-seq (https://cite-seq.com/)

. Biolegend TotalSeq (https://www.biolegend.com/en-us/totalseq)
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