Alignment and feature counting

November 2025

Single Cell RNAseq Analysis Workflow

Image by Stephanie Hicks via learn.gencore.bio.nyu.edu

10x single-cell isolation

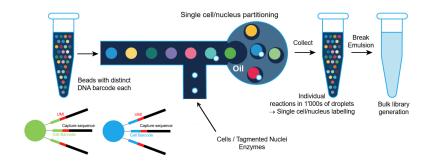


Image from https://wp.unil.ch/gtf/single-cell-experiments-10x/

10x library file structure

The 10x library contains four pieces of information, in the form of DNA sequences, for each "read".

- sample index identifies the library, with one or two indexes per sample
- ▶ 10x barcode (BC) identifies the droplet in the library
- ► UMI (Unique Molecular Identifier) identifies the transcript molecule within a cell and gene
- insert the transcript molecule

- TruSeq Read 1: Read 1 primer
- ► TruSeg Read 2: Read 2 primer

Images from 10, Comonsida

▶ P5 and P7 are short DNA adapter sequences that allow the library to bind to the Illumina flow cell

Raw fastq files

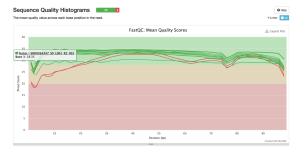
The sequences for any given fragment will generally be delivered in 3 or 4 files:

▶ **I1**: I7 sample index

▶ 12: I5 sample index if present (dual indexing only)

▶ R1: 10x barcode + UMI

► **R2**: insert sequence



QC of Raw Reads - FASTQC

QC of Raw Reads - MultiQC - General Statistics

QC of Raw Reads - MultiQC - Sequence Quality Histograms

Alignment and counting

The first steps in the analysis of single cell RNAseq data:

- ► Align reads to genome
- ► Annotate reads with feature (gene)
- Quantify gene expression

Cell Ranger

- ▶ 10x Cell Ranger This not only carries out the alignment and feature counting, but will also:
 - Call cells
 - Generate a summary report in html format
 - Generate a "cloupe" file

Alternative methods include:

- STAR solo:
 - Generates outputs very similar to CellRanger minus the cloupe file and the QC report
 - Will run with lower memory requirements in a shorter time than Cell Ranger
- ► Alevin:
 - Based on the popular Salmon tool for bulk RNAseq feature counting
 - Alevin supports both 10x-Chromium and Drop-seq derived data

Obtaining Cell Ranger

Setup instructions given in the course materials homepage.

Cell Ranger tools

Cell Ranger includes a number of different tools for analysing scRNAseq data, including:

- cellranger mkref for making custom references
- cellranger count for aligning reads and generating a count matrix
- cellranger aggr for combining multiple samples and normalising the counts

Preparing the raw fastq files

Cell Ranger requires the fastq file names to follow a convention:

```
<SampleName>_S<SampleNumber>_L00<Lane>_<Read>_001.fastq.gz
```

e.g. for a single sample in the Caron data set we have:

```
SRR9264343_S0_L001_I1_001.fastq.gz
SRR9264343_S0_L001_R1_001.fastq.gz
SRR9264343_S0_L001_R2_001.fastq.gz
```

Genome/Transcriptome Reference

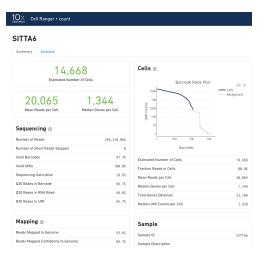
As with other aligners Cell Ranger requires the information about the genome and transcriptome of interest to be provided in a specific format.

- Obtain from the 10x website for human or mouse (or both -PDX)
- ▶ Build a custom reference with cellranger mkref

```
cellranger mkref \
  --fasta={GENOME FASTA} \
  --genes={ANNOTATION GTF} \
  --genome={OUTPUT FOLDER FOR INDEX} \
  --nthreads={CPUS}
```

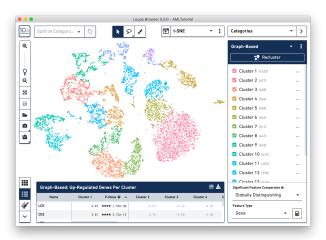
Running cellranger count

- Computationally very intensive
- ► High memory requirements


```
cellranger count \
   --id={OUTPUT_SAMPLE_NAME} \
   --transcriptome={DIRECTORY_WITH_REFERENCE} \
   --fastqs={DIRECTORY_WITH_FASTQ_FILES} \
   --sample={NAME_OF_SAMPLE_IN_FASTQ_FILES} \
   --localcores={NUMBER_OF_CPUS} \
   --localmem={RAM_MEMORY}
```

▶ One directory per sample

```
File Edit View Search Terminal Help
_versions
%h%-$
%h%-$
%h%-$
s SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```


```
File Edit View Search Terminal Help
_versions
%h%-$
%h%-$ s SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature bb_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw feature_bc_matrix
raw feature_bc_matrix
web_summary.html
%h%-$
```

Cell Ranger report

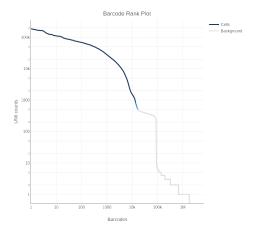

```
| File Edit View Search Terminal Help
_versions
%h%-$
%h%-$
%h%-$
%n%-$
cloupe.cloupe
| filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

Loupe Browser


```
File Edit View Search Terminal Help
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

```
File Edit View Search Terminal Help
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

Two types of outputs:


► Text-based files: .tsv and .mtx

► HDF5 files: .h5

Both of these can be read by standard scRNA-seq analysis packages and contain data for a **unique molecular identified (UMI) count matrix**:

```
File Edit View Search Terminal Help
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

Cell Ranger cell calling

