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Differential Expression - Pseudo-bulk Method

Test for significant changes in gene expression between conditions.

e Are any genes high- or down-regulated between treated vs control or wild-type

vs mutant or healthy vs disease, etc.
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Benchmark study for differential expression methods in scRNA-seq:

Squair, J.W., Gautier, M., Kathe, C. et al. (2021) Nature Communications https://doi.ora/10.1038/s41467-021-25960-2
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Create pseudo-bulk samples by summing
raw counts across cells for each sample

Apply standard bulk RNA-seq DE
methods (edgeR, DESeq2, limma)


https://doi.org/10.1038/s41467-021-25960-2

Differential Expression - Pseudo-bulk Method
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Create pseudo-bulk samples by summing
counts across cells for each sample and
cell type/cluster combination

Apply standard bulk RNA-seq DE
methods (edgeR, DESeq2, limma)



Differential Expression - Pseudo-bulk Method

Cells are not biological replicates

e Single cells within a sample are not independent of each other.
e Using cells as replicates amounts to studying variation inside an individual.
o We want to study variation across a population of individuals.
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Differential Expression - Workflow

e Create pseudo-bulk samples — aggregateAcrossCells ()
e Filter low-count samples/genes
o  Pseudo-bulks (samples) with very low number of cells (e.g. < 20)
o Genes with very few counts (this is done internally with edgeR: : filterByExpr () )

e Run DE analysis — scran: :pseudoBulkDGE () (uses edgeR package)

o Calculates normalisation factors to account for transcript composition differences
across pseudo-bulk samples — edgeR: :calcNormFactors ()

o Estimates mean-dispersion relationship across genes — edgeR: :estimateDisp ()

o Fits linear model to the data — edgeR: : g1lmQLFit ()
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Differential Expression - Workflow
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Once we have pseudo-bulks, the analysis is identical to
standard bulk RNA-seq analysis

log-ratio (this sample vs others)

Statistical models account for the mean-variance
relationship observed in RNA-seq data

Dimensionality reduction methods can be used to
visualise how our samples cluster together

Mean-difference plots show if library size
normalisation was successful
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Differential Expression - Workflow

One difference from standard bulk analysis is that we have comparisons per cell label and so we need
to decide which results we want to extract from our analysis.
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Differential Abundance

Test for significant changes in cell abundance across

conditions.

e Are any cells enriched/depleted between freated vs
control or wild-type vs mutant or healthy vs disease, etc.

A simple approach is to count how many cells there are in
each cluster in each sample group and do a test to compare

those counts.
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Differential Abundance

Test for significant changes in cell abundance across
conditions.

e Are any cells enriched/depleted between freated vs
control or wild-type vs mutant or healthy vs disease, etc.

Methods that require pre-defined clusters as input are
limited in the context of continuous differentiation,
developmental or stimulation trajectories, non-discrete cell
states.

Milo is a method that overcomes these
limitations by performing differential
abundance tests in local cell neighbourhoods

Paper on Milo method: Dann, E., Henderson, N.C., Teichmann, S.A. et al (2022) Nature Biotechnology. https://doi.org/10.1038/s41587-021-01033-z
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Differential Abundance - Milo
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Paper on Milo method: Dann, E., Henderson, N.C., Teichmann, S.A. et al (2022) Nature Biotechnology. https://doi.ora/10.1038/s41587-021-01033-z
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Differential Abundance - Milo

@ Condition A O Condition B

Test neighborhoods for differential abundance

Uses K-nearest neighbour graph to model cellular states as
overlapping neighbourhoods.

Spatial non-independence of the tests is accounted for with a
weighted version of the Benjamini-Hochberg FDR method.

Determines neighbourhoods and groupings independently of our
defined clusters.

Can be used for complex models.

Fast and scalable.

Paper on Milo method: Dann, E., Henderson, N.C., Teichmann, S.A. et al (2022) Nature Biotechnology. https://doi.ora/10.1038/s41587-021-01033-z

bioinfotraining.bio.cam.ac.uk


https://doi.org/10.1038/s41587-021-01033-z

Differential Abundance - Milo

Workflow

@ Condition A O Condition B

e  Construct KNN graph
o  use MNN-corrected matrix (or PCA for non-batched
data)
o calculates Euclidean distance between cells and its k
nearest neighbours

e  Define cell neighbourhoods by sub-sampling the graph to
identify useful “index cells” (for computational efficiency)

e  Counts cells in neighbourhoods

e  Tests for DA in neighbourhoods (using a Negative Binomial
linear model suitable for count data)

e  Does a multiple testing correction (spatial FDR)

Test neighborhoods for differential abundance

e  Visualise the neighbourhood graph with our UMAP/t-SNE
embedding

Paper on Milo method: Dann, E., Henderson, N.C., Teichmann, S.A. et al (2022) Nature Biotechnology. https://doi.ora/10.1038/s41587-021-01033-z
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