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Single Cell RNAseq Analysis Workflow
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Why do high-dimensional data pose a problem?

In single-cell data we typically have thousands of genes across thousands (or millions!) of cells

= Interpretation/visualisation beyond 2D is hard.

= As we increase the number of dimensions, our data becomes more sparse.

= High computational burden for downstream analysis (such as cell clustering)

Solution: collapse the number of dimensions to a more manageable number, while preserving
information.

original data space

component space

Gene 3

PC1

(Image source)

] UNIVERSITY OF g EQQSR%H %artr]?rzdge
CAMBRIDGE e

3/16



http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/#pca_illu3d
http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/#pca_illu3d

There are many dimensionality reduction algorithms
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https://pdfs.semanticscholar.org/664d/40258f12ad28ed0b7d4
€272935ad72a150db.pdf
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Which genes should we use for downstream analysis?

Select genes which capture biologically-meaningful variation, while reducing the number of genes which
only contribute to technical noise
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= Model the gene-variance relationship across all
genes to define a data-driven “technical variation
threshold”

= Select highly variable genes (HVGs) for
downstream analysis (e.g. PCA and clustering)
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http://bioconductor.org/books/3.13/OSCA.basic/feature-selection.html
http://bioconductor.org/books/3.13/OSCA.basic/feature-selection.html

Principal Components Analysis (PCA)
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Data in feature space == Find principal components == Data in principal components space
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= |t's a linear algebraic method of dimensionality reduction
= Finds principal components (PCs) of the data

a Directions where the data is most spread out (highest variance)

PC1 explains most of the variance in the data, then PC2, PC3, etc.

a PCA is primarily a dimension reduction technique, but it is also useful for visualization

A good separation of dissimilar objects is provided

Preserves the global data structure
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https://subscription.packtpub.com/book/data/9781789345070/5/ch05lvl1sec38/dimensionality-reduction
https://subscription.packtpub.com/book/data/9781789345070/5/ch05lvl1sec38/dimensionality-reduction

Principal Components Analysis (PCA)
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= When data is very highly-dimensional, we can select the most important PCs only, and use them for
downstream analysis (e.g. clustering cells)

a This reduces the dimensionality of the data from ~20,000 genes to maybe 20-50 PCs
a Each PC represents a robust ‘metagene’ that combines information across a correlated gene set

= Prior to PCA we scale the data so that genes have equal weight in downstream analysis and highly
expressed genes don't dominate
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https://subscription.packtpub.com/book/data/9781789345070/5/ch05lvl1sec38/dimensionality-reduction
https://subscription.packtpub.com/book/data/9781789345070/5/ch05lvl1sec38/dimensionality-reduction

How many principal components for downstream analysis?

After PCA we are still left with as many dimensions in our data as we started

(Image Source)
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gy But our principal components progressively capture less
variation in the data

20

How do we select the number of PCs to retain for
downstream analysis?

15

Variance explained (%)
10

o = Using the “Elbow” method on the scree plot

%, = Using the model of technical noise (shown earlier)

]
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(u) T T T . 7~ = Trying downstream analysis with different number of PCs
(10, 20, or even 50)

PC
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http://bioconductor.org/books/3.17/OSCA.advanced/dimensionality-reduction-redux.html
http://bioconductor.org/books/3.17/OSCA.advanced/dimensionality-reduction-redux.html

Visualizing PCA results: PC scores

Because PC1 and PC2 capture most of the variance of the data, it is common to visualise the data

projected onto those two new dimensions.
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Gene expression patterns will be captured by
PCs — PCA can separate cell types

Note that PCA can also capture other things,
like sequencing depth or cell
heterogeneity/complexity!

However, PC1 + PC2 are usually not enough to
visualise all the diversity of cell types in single-
cell data (usually we need to use PC3, PC4,
etc...) — not so good for visualisation, so...
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Non-linear dimensionality reduction methods

Graph-based, non-linear methods: UMAP and t-SNE

Manifold:

distance in Pcaspace 1 1€S€ Methods can run on the output of the PCA, which
(euclidean distance)  Speeds their computation and can make the results more
robust to noise

t-SNE and UMAP should only be used for visualisation, not
as input for downstream analysis

distance in t-SNE space
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t-Distributed Stochastic Neighbor Embedding (t-SNE)

It has a stochastic step (results vary

N a every time you run it)
Vv W Higher KL divergence

W (cost / error) Only local distances are preserved, while
_’ *‘ terations distances between groups are not
o% o . A always meaningful
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@ © O\\b § eraons Some parameters dramatically affect the
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e
- iterations Learn more about how t-SNE works from
gene A —~  lowerKLdivergence  this video: StatQuest: t-SNE, Clearly
A0—6000—®¢ (cost / error) Explained

2B UNIVERSITY OF 38 cancer | cambridge
S CAMBRIDGE ',8..._:..:: SESEARCH Institute 11/16



https://youtu.be/NEaUSP4YerM
https://youtu.be/NEaUSP4YerM
https://youtu.be/NEaUSP4YerM
https://youtu.be/NEaUSP4YerM

t-SNE

Main parameter in t-SNE is the
perplexity (~ number of neighbours
each point is “attracted” to)

= Balance between preserving local vs 20

global structure

= Higher values usually result in more
compact clusters

TSNE 2

= But too high can lead to overlap of
clusters, making them harder to
distinguish

Exploring different perplexity values that ]

best represent the biological diversity of
cells is recommended.
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UMAP

= Non-linear graph-based dimension
reduction method like t-SNE

= Newer & efficient = fast
= Runs on top of PCs

= Based on topological structures in
multidimensional space

= Faster and less computationally intensive
than tSNE

= Preserves the global structure better than t-SNE
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Step 1: Compute a graphical Step 2 (non-parametric): Learn an

representation of the dataset embedding that preserves the
structure of the graph
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UMAP

Main parameter in UMAP is
n_neighbors (the number of
neighbours used to construct the initial

graph). 51

Another common parameter is
min_dist (minimum distance between

points)

UMAP 2

= Together they determine balance :

between preserving local vs global
structure 51

= For practical simplicity, we usually
only tweak n_neighbors, although
playing with both parameters can be |
beneficial
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Exploring different number of

neighbours that best represent the
biological diversity of cells is recommended.
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Key Points

Dimensionality reduction methods simplify high-dimensional data while preserving biological signal.
Common methods in scRNA-seq analysis include PCA, t-SNE, and UMAP.

PCA transforms the data linearly to capture the main variance and reduce the dimensionality from
thousands of genes to a few principal components.

PCA results can be utilized for downstream analysis like cell clustering and trajectory analysis, and as
input for non-linear methods such as t-SNE and UMAP.

t-SNE and UMAP are non-linear methods that group similar cells and separate dissimilar cell clusters.

These non-linear methods are primarily for data visualization, not for downstream analysis.
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