

Introduction to single-cell RNA-seq analysis

Quality Control

12th September 2022

Single Cell RNAseq Analysis Workflow

10x overview

Image source: https://web.genewiz.com/single-cell-faq

Not every droplet is useble

Quality Control overview

- Aim of QC is ...
 - To remove undetected genes
 - To remove empty droplets
 - To remove droplets with dead cells
 - To remove Doublet/multiplet
 - Ultimately To filter the data to only include true cells that are of high quality
- Above is achieved by ...
 - Applying hard cut-off or adaptive cut-off on ...
 - Number of genes detected per cell
 - Percent of mitochondrial genes per cell
 - Number of UMIs/transcripts detected per cell

Quality Control

Bioconductor R packages:

- scran: Collection functions for interpretation of singlecell RNA-seq data
- *scater*: For focus on quality control and visualization.
- DropletUtils: Handling single-cell (RNA-seq) data from droplet technologies such as 10X Genomics

Orchestrating Single-Cell Analysis with Bioconductor *Robert Amezquita, Aaron Lun, Stephanie Hicks, Raphael Gottardo*

http://bioconductor.org/books/release/OSCA/

Read CellRanger outputs into R

- CellRanger outputs: gives two output folders raw and filtered
- Each folder has three zipped files
 - features.tsv.gz, barcodes.tsv.gz and matrix.mtx.gz
 - raw_feature_bc_matrix
 - All valid barcodes from GEMs captured in the data
 - Contains about half a million to a million barcodes
 - Most barcodes do not actually contain cells
 - filtered_feature_bc_matrix
 - Excludes barcodes that correspond to this background
 - Contains valid cells according to 10x cell calling algorithm
 - Contains 100s to 1000s of barcodes

%h%-\$ ls SRR9264343/outs/raw_feature_bc_matrix barcodes.tsv.gz features.tsv.gz matrix<u>.</u>mtx.gz

Single Cell Experiment Vocabulary alert

- cell = Barcode = droplet
- Transcript = UMI

The SingleCellExperiment object

The Counts Matrix

To access counts from sce object: counts(sce)

Feature metadata

To access gene metadata from sce object: rowData(sce)

Droplet annotation (Cell metadata)

To access cell metadata from sce object: colData(sce)

Properties of RNAseq data - Total UMIs

Properties of RNAseq data - Distribution of counts for a gene across cells

Properties of RNAseq data - Distribution of UMI counts

Properties of RNAseq data - Distribution of genes per cell

Properties of RNAseq data - Distribution of mitochondrial genes

Challenges

- Selecting appropriate thresholds for filtering, so that high quality cells are kept without removing biologically relevant cell types
 - Differentiating poor quality cells from less complex ones
 - Differentiating transcriptionally active cell types from multiplets/doublets
 - Distinguishing dead cells from those cells that express a high proportion of mitochorial genome

Recommendations

- Ensure that you know what types of cells you expect to be present before performing the QC.
- Are you expecting to find low complexity cells in your sample or cells with higher levels of mitochondrial expression?
- When assessing the quality of our data, we must take this biology into consideration

