

Cambridge Institute

Alignment and feature counting

September 2022

Single Cell RNAseq Analysis Workflow

Image by Stephanie Hicks via learn.gencore.bio.nyu.edu

Single Cell RNAseq Analysis Workflow

10x single-cell isolation

Image by 10x Genomics

10x library file structure

The 10x library contains four pieces of information, in the form of DNA sequences, for each "read".

- **sample index** identifies the library, with one or two indexes per sample
- 10x barcode identifies the droplet in the library
- UMI identifies the transcript molecule within a cell and gene
- insert the transcript molecule

Raw fastq files

The sequences for any given fragment will generally be delivered in 3 or 4 files:

- I1: I7 sample index
- I2: I5 sample index if present (dual indexing only)
- R1: 10x barcode + UMI
- R2: insert sequence

QC of Raw Reads - FASTQC

QC of Raw Reads - MultiQC - General Statistics

QC of Raw Reads - MultiQC - Sequence Quality Histograms

Alignment and counting

The first steps in the analysis of single cell RNAseq data:

- Align reads to genome
- Annotate reads with feature (gene)
- Quantify gene expression

Cell Ranger

- 10x Cell Ranger This not only carries out the alignment and feature counting, but will also:
 - Call cells
 - Generate a summary report in html format
 - Generate a "cloupe" file

Alternative methods include:

- STAR solo:
 - Generates outputs very similar to CellRanger minus the cloupe file and the QC report
 - Will run with lower memory requirements in a shorter time than Cell Ranger
- Alevin:
 - Based on the popular Salmon tool for bulk RNAseq feature counting
 - Alevin supports both 10x-Chromium and Drop-seq derived data

Obtaining Cell Ranger

Setup instructions given in the course materials homepage.

Cell Ranger tools

Cell Ranger includes a number of different tools for analysing scRNAseq data, including:

- cellranger mkref for making custom references
- cellranger count for aligning reads and generating a count matrix
- cellranger aggr for combining multiple samples and normalising the counts

Preparing the raw fastq files

Cell Ranger requires the fastq file names to follow a convention:

```
<SampleName>_S<SampleNumber>_L00<Lane>_<Read>_001.fastq.gz
```

e.g. for a single sample in the Caron data set we have:

```
SRR9264343_S0_L001_I1_001.fastq.gz
SRR9264343_S0_L001_R1_001.fastq.gz
SRR9264343_S0_L001_R2_001.fastq.gz
```

Genome/Transcriptome Reference

As with other aligners Cell Ranger requires the information about the genome and transcriptome of interest to be provided in a specific format.

- Obtain from the 10x website for human or mouse (or both PDX)
- Build a custom reference with cellranger mkref

```
cellranger mkref \
  --fasta={GENOME FASTA} \
  --genes={ANNOTATION GTF} \
  --genome={OUTPUT FOLDER FOR INDEX} \
  --nthreads={CPUS}
```

Running cellranger count

- Computationally very intensive
- High memory requirements

```
cellranger count \
    --id={OUTPUT_SAMPLE_NAME} \
    --transcriptome={DIRECTORY_WITH_REFERENCE} \
    --fastqs={DIRECTORY_WITH_FASTQ_FILES} \
    --sample={NAME_OF_SAMPLE_IN_FASTQ_FILES} \
    --localcores={NUMBER_OF_CPUS} \
    --localmem={RAM_MEMORY}
```

One directory per sample

```
File Edit View Search Terminal Help
%h%-$ ...
%h%-$ ls SRR9264343/
 cmdline
filelist
finalstate
 invocation
_jobmode
 log
_mrosource
outs
_perf
 _sitecheck
 tags
 _timestamp
 uuid
 vdrkill
 versions
```

```
File Edit View Search Terminal Help
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

```
File Edit View Search Terminal Help
_Versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw feature_bc_matrix
raw feature_bc_matrix.h5
web_summary.html
%h%-$
```

Cell Ranger report

SITTA6

Number of Reads	294,310,066
Number of Short Reads Skipped	0
Valid Barcodes	97.7%
Valid UMIs	100.0%
Sequencing Saturation	18.6%
Q30 Bases in Barcode	96.1%
Q30 Bases in RNA Read	94.6%
Q30 Bases in UMI	95.7%

Mapping ⊚				
Reads Mapped to Genome	93.6%			
Reads Mapped Confidently to Genome	89.7%			

Sample	
Sample ID	SITTA6
Sample Description	

```
File Edit View Search Terminal Help
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

Loupe Browser


```
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

```
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

Two types of outputs:

■ Text-based files: .tsv and .mtx

■ HDF5 files: .h5

Both of these can be read by standard scRNA-seq analysis packages and contain data for a unique molecular identified (UMI) count matrix:

	Cell1	Cell2	 CellN
Gene1	3	2	13
Gene2	2	3	1
Gene3	1	14	18
GeneM	25	0	0

```
_versions
%h%-$
%h%-$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

Cell Ranger cell calling

Single Cell RNAseq Analysis Workflow

