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® BULK VS SINGLE CELL RNA-SEQ
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® BULKVSSINGLE CELL RNA-SEQ

1. mMRNA: TruSeq RNA-Seq (Gold Standard)

« ~20,000 transcripts

More when consider splice variants / isoforms

« Observe 80-95% of transcripts depending on
sequencing depth

2. Low input methods ~3000 cells / well
» 4000-6000 transcripts per sample

Limiting to transcripts observed across all samples

« Observe 20-60% of the transcriptome

3. Single Cell Methods
« 200 -10,000 transcripts per cell

» QObserve 10-50% of the transcriptome

* Many transcripts will show up with zero
counts in every cell. (even GAPDH)

* |If you only looked at transcripts observed in
all cells numbers drop dramatically.

Source: Sarah Boswell, Harvard Medical School, September 2020




® BULK VS SINGLE CELL RNA-SEQ

Deep RNA-seq | Sort-seq | Low input | scRNA-seq

Transcriptome
Coverage

Throughput

Cell Subtype
Information

Seguencing
Depth

Cost per Sample

Source: Sarah Boswell, Harvard Medical School, September 2020
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Disadvantages of scRNA-seq

- Dropouts and noisy data

- Lowly expressed genes
might be undetected

- Samples will contain
doublets

- Replicates without batch
effect are unlikely

- Expensive



APPLICATIONS

' || naturemedicine

Letter | Published: 08 June 2020

A single-cell atlas of the peripheral
immune response in patients with severe
COVID-19

Aaron J. Wilk, Arjun Rustagi, Nancy Q. Zhao, Jonasel Roque, Giovanny J. Martinez-

Colén, Julia L. McKechnie, Geoffrey T. Ivison, Thanmayi Ranganath, Rosemary Vergara,
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A single-cell atlas of the airway epithelium reveals
the CFTR-rich pulmonary ionocyte

Lindsey W. Plasschaert37, Rapolas 7 ilionis™*, Rayman Choo-Wing%, Virginia Savova®s, Judith Knehr!, Guglielmo Roma®,
Allon M. Klein®™ & Aron B. Jaffel-3+

J nature

Article | Published: 20 February 2019

A single-cell molecular map of mouse
gastrulation and early organogenesis

Blanca Pijuan-Sala, Jonathan A. Griffiths, Carolina Guibentif, Tom W. Hiscock, Wajid

Jawaid, Fernando J. Calero-Nieto, Carla Mulas, Ximena Ibarra-Soria, Richard C. V.
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Figure 1: Scaling of scRNA-seq experiments.
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10x Genomics SPLiT-seq
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Making 1 million cell experiments routine
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Good sample
preparation is
key to success!
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WORKFLOW

Single Cell RNA Sequencing Workflow

RT& Second-strand
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Solid Tissue Dissociation Single Cell Isolation RNA cDNA
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®_ SAMPLE PREPARATION

- Understand well the nature of the sample (sampling conditions, preparation, purity)

- ldentify the source of technical difficulties in order to resolve them first

- Practice your sample preparation, optimise the protocol well, do not rush to the final experiment

- A well planned pilot experiment is essential for evaluating sample preparation and for understanding the
required number of cells.

- You need your cells to be highly viable (>90-95%), have no clumps and no debris. Cell membrane integrity
is a must!

- Free-floating RNA will make analysis more challenging

- Be cautious about FACS (especially with more fragile cells). If FACS necessary for enrichment, remember
that time is crucial factor

- Count with haemocytometer or cell counter (Countess Il Automated Cell Counter) — do not trust sorter
counts

- Fixation and cryopreservation are not compatible with many techniques

w5 CANCER | CAMBRIDGE
8 RESEARCH | INSTITUTE
ATy UK




® METHODS

. 1) Cellsin wells, traps and valves (nanowell, Flow sorting, CellenOne,
Fluidigm C1, SmartSeq, plexWell/seqWell) .
- Screen for and retrieve single cells of interest Passive wells Active pumps and valves
- Enrich for rare cells with decided properties
- Control the cellular microenvironment
- Monitor and control cell-cell interactions
- Precise/extensive manipulation of single cells

2) Droplets (Drop-seq, 10x Genomics)
- Introduce distinct ‘packets’ of reagents to single cell (e.g. barcodes)
- Perform amplification on individual cells
- Sort large population of single cells

. . . ‘ . Incubati ,‘ n channel \ l *&oo )
3) Combinatorial indexing (SCl-seq, SPLiT-seq) W 00000000080 ogoo% o.o%
. . \O Droplet O Q
- Economic use of reagents for cell separation || @ e s
- Efficiency of handling larger population than Drop-seq | T s
- Maintain complexities of population without bias from droplet or well | }'s‘?s.:i‘iiil?‘;ﬂ:l‘iimmm
%5y CANCER CAMBRIDGE  4) ‘One tube’ solutions (SciPio Bioscience, Fluent
- RESEARCH | INSTITUTE

.&mg UK Bioscience, CS Genetics)



® MORE CELLS OR MORE GENES?

O '
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.': il — 10X
SMART-seq?2 Droplet-RNAseq | e
- 100 cells - 10000 cells : ; ; ; :
_ ) 0 25 50 75 100
- Full-length libraries - 50k reads per cell Gene body percentile (%) (5'—+3)
- 1M reads per cell - 3’/5 bias

- Required number of cells increases with complexity of the sample.
*}% — R - Number of reap!s W'I|| depend.on biology Qf sample |
e RESEARCH | INSTITUTE - Cell-type classification of a mixed population usually requires lower read depth
“rodmils UK - You can always re-sequence your samples.
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® SMART-SEQ2/3/4 OVERVIEW

. mREMA

AAAARN ocked nuckeic acid {LRA y-l yﬁq |y, 2 |y, 1

Bt — GGG ARAAAA
AR oy CeC N o5 . o5 g
Switch mechanism at mRMNA fragment FiFst strand synthesis with cDMA synthesis 'CR Tagmentation Gap repair, enrich Enrichment-ready fragment
the 5'end of RNA Moloney murine leukemia ment PCR and PCR
termnplates (Srmart) VIFLS Feverse transcriptase purification

Developed for single cell but can performed using total RNA.
eSelects for poly-A tail.

eFull transcript assay.

*Uses template switching for 5' end capture.

eStandard lllumina sequencing.

ePlate-based solution so labour intensive, slow and costly (~¥S12/cell)

5’ tagged reads

e} Digital count c
5’ . ellno. 1 2 3 4 ..
\/WVV RNA - - OT transcripts N, e e (60 6 197 .
— N 5" isoform structure = —~ A 0 2 1770..
cDNA L 580 161.
Internal reads 5 | e
Optimized I 2 | e = 893357

TS-RT B0 Full isoform -

. Single-cell digital isoform counts matrix
[O—3—{1—{HH1 reconstruction



®. SMART-SEQ2/3/4 + MOSQUITO LV

. . FACS sorting on 96/384-well plates
i 000000000
ysis
, 000000000
o 0000060000
g 000000000
R 0000006000 |
s
|
‘ * ‘ FACS Fluidigm Cl-autoprep system
TRk}
» - . § 2 $1i34d
Single cell RNA-Seq . . . .
- Mosquito LV makes assay miniaturisation

- ; simple, leading to significant savings on
Dissecton '21°u'g{%" | "(enve:dny STANA-seq2 precious reagents and time
M .Zn & ; ’ - Mosquito LV offers highly accurate and precise
e W ® 22 .‘:;'. LJ multichannel pipetting from 25 nLto 1.2 pL.
%% CANCER | CAMBRIDGE R : )
:;..,{' RESEARCH | INSTITUTE ® 2ns odn d SmartSeq2 cost reduced from $12 to S4 per
ATy UK ' cell




® CELLENONE
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3)

Cell suspension is aspirated into a
glass capillary

Generation of drops on demand, in
air

Thanks to automated imagining,
cellenONE tracks cells and
determines if upcoming drops will
contain or not a single cell

Drops containing single cells are
dispensed into selected targets,
drops without cells or with more
than one cells are dispensed into
recycling tube
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DLP+ on 1000s
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cell copy number
and cycle state

cellmine

o 1A

Resource of >50,000
single-cell genomes

clonal
merge
—_— @

merged pseudobulk
phylogenetic analysis:
CNV/SNV/breakpoint




SPLIT-SEQ OVERVIEW (PARSE BIOSCIENCES, SCALE BIO)

Video available at:

https://www.youtube.com/watch?v=Wqga
e/e/mKUc

Time flexibility — single experiment for samples collected on different
dates (up to 6months storage)

No instrument required for experiment. Computational pipeline available
Up to 48 samples / 100k cells or 96 samples / 1M cells — kit has to be
used at once

Doublet rate of 0.27% per 1000 cells (3.4% per library)

Random hexamers method on top of PolyA capture

Works with any species, any sizes of cells/nuclei & results in lower
background noise

CRISPR, TCR, BCR profiling compatibility
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Cells ara then distributed inte %5 wealls, and an in-cell ligation
reaction appends a secomd well- S-DE{lﬂl: barcodeto the cDMA.
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Inthe first raund of barcoding, fixed call samplas ans distributed

transcription (KT} reaction usng wall-specific barcoded primars,

The third-round barcode s appended with anothar
raund of in-cell ligation.

J
|Ligation} )g-iﬁg

After three rounds of barcoding, the cells are pooled and splitinto
& distinct populations we temn sublibrarles, The user can choose
the nwmber of cells in each sublibra y tocontrod the depth of
sequencing. Calls will not be pocled again after this stap, After this
final split cells are lysed and the barcoded cOMA B Iselated. A
Fourth sublibrary-specific barcods is intreduced by PCR to sach
clha moteoule,

Split

N
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e

After sequencing, each single cell transcriptome is assembled by
rDmhlnlnp raads containing the same four-bancede combination.
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https://sites.google.com/uw.edu/splitseq

@ NEW PRODUCTS (HIVE, SCIPIO, FLUENT)

@,
Honeycomb HIVE
‘- Capture Cells - Load cells into the | Asteria (SciPio Bioscience) - hydrogel technology, a

HIVE and allow single cells to settle
gently into HIVE picowells containing
barcoded mRNA-capture beads

e The HIVE Difference: Store Or Ship - g
With cells in a stable environment, 65,000 wels; ~60 pm diameter
store HIVEs in the freezer and/or ship
when ready to process

new era of instrument-free, ready-to-use scRNA-seq
experiments
© @ O

Initial cell Cell labelling  Dilution int
suspension with linker and gl solut

% % l %/"f%/

Fre dmRNA'om Bead-mRNA Amplified barcoded
* Poly-T sequence for mRNA isolated lysed cell captu recovery CDNA solu
capture via 3’ poly-A by local bea a

Cell lysis Gel dissolution RT-PCR Amplification

)

BIOLOGICAL SAMPLE

[ LIBRARY PREP / SEQUENCING J

[

CS Genetics - instrument-free, solution-phase Fluent BioSciences
chemical biology to provide unmatched ease-of- - during sample preparation, cell
use, scalability, and affordability suspension of interest is mixed
o with core template particles and “ope
[ R cars sage segregated into Pre-templated Propre i iy
Instant Partitions (PIPs) by simple B
vortexing = ‘

- Great scalability depending on
experiment needs (2K cells= $300,
20k cells=$900)




®_ DROP-SEQ OVERVIEW

- Moved throughput from hundreds to Ce“
thousands.

- Droplet-based processing using microfluidics

- Nanoliter scale aqueous drops in oil.

Highly Parallel Genome-wide Expression Profiling of
Individual Cells Using Nanoliter Droplets

~ 3. En d Graphical Abstract Authors
Evan Z. Macosko, Anindita Basu, ...,
- Bead based (STAMPs). Drop-seq single cell analysis Aviv Regev, Steven A. McCarroll
- Single-cell transcriptomes attached to Cells Correspondence
m iC ro p art | Cl es emacosko@genetics.med.harvard.edu
. L B (E.Z.M.),
. . Distinctl .
- Cell barcodes use split-pool synthesis. S % gcmr?u@genet-cs-med-harvard-edu
. . beads AM.
- Uses UMI (Unique Molecular Identifier)
L # * R * @ In Brief
- Chance to have two cells within one droplet @ Canturing <i .
@ apturing single cells along with sets of
) uniquely barcoded primer beads together
- in tiny droplets enables large-scale,
a highly parallel single-cell transcriptomics.

Applying this analysis to cells in mouse
retinal tissue revealed transcriptionally

‘/._( ! a/.ﬂﬁ\\\ » }‘,ié * distinct cell populations along with
|\ /' = K‘ /} = ; E ; E molecular markers of each type.

,..':' ?‘ % SI?SNE%E{RC H |CI:\IASM|-||§|-F\L)J|-[|2|§E 1000s of DNA-barcoded single-cell transcriptomes

s UK




Q. UMI = UNIQUE MOLECULAR IDENTIFIERS

After PCR enrichment, without UMIs, one can not distinguish if multiple copies of a

PCR duplicate removal without UMIs

~

AllPCR
duplicates?

|_‘

in silico
reduced to
1 molecule

el CANCER
RESEARCH

gy Ui

fragment are caused by PCR clones a
By using UMIs, PCR clones can be fol

combinations, which can only be explained by PCR clones.

When performing variant analyses, t
result in incorrect calls and thus wro

PCR duplicate removal with UMIs

|
Grouping

into read
families

Y

)

in silico reduced
to correct 3
molecules
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Variant calling without UMIs

<

True or false
variants?

<

|

!

s " Retention of
sequencing error

r if they are real biological duplicated.
ind by searching for non-unique fragment-UMI

hese falsely overrepresented fragments can

Variant calling with UMIs

il

|

False variant
present only in
some reads with
same UMI

True variant
present in all reads
with same UMI

Only the true
variant is
retained



TruSeq Read 1

‘ C D (Read 1T) - Poly(dT)VN
) Barce
A »
cos Cal 3. Gel Bend Nextera Read 1

. vé (Read IN) . Capture Sequence

oo e LUx UMI

° [ 3

L

AJ

- Droplet-based similar to Drop-Seq, 3’ or 5 mRNA

- In contrast to Drop-seq, where solid beads are used for RNA capture, 10X
uses soft hydrogels containing oligos. These enable “single Poisson
loading” leading to capture of >60% of input cells. Sl e il g S

- Standardized instrumentation and reagents (unhackable so no
customisation or control)

- Very easy to use and less processing time

- More high-throughput scaling - 16 samples can be processed
simultaneously with up to 20000 cells captured per sample N

- The doublet rate increases with number of cells loaded

- CellRanger and CellLoupe software are available and user friendly

- Aot of additional addons possible (CRISPR, TCR & BCR profiling etc.)

—

Collect

%

— 0000

oo @ o o
PY
@
[
@

o
10x Barcoded X
Gel Beads Cells il

Enzyme @
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* .m UK Source: 10x Genomics



®, 10X GENOMICS o=
® OVERVIEW =

+
R Master Mix
+
m@x L Cell Lysate
Partitioning Olle o7 o
Gel Beads O ¢ 6060060608 O
Master Mix + Sample Ojoevsvocoevee O
* o lee——NOFILL —» 8

Poly(A) + RNA

M —

s §
- : ‘ Poly(dT)VN

e S mm—— e e— :
(=) s s
i ; R rse Transcriptic
Chromium X . - l everse Transcription
: "“'\444‘
: | ARARARARRR
iTemola!e Switch Oligo Priming
: .144““-‘4 v
- ; 44— GGG I

Template Switch
Transcript Extension

‘44|‘44 v
A4 — GGG I
_ D= - 7]
f% CANCER | CAMBRIDGE © Read! 10x UMl PolyldTIVN

Making 1 million cell experiments routine
.Mﬁ UK cDNA from poly-adenylated mRNA



®, 10X GENOMICS LIBRARIES

‘ Chromium Single Cell V(D)J Dual Index Library
Chromium Single Cell 3’ Gene Expression Dual Index Library

Sample Wef%"clﬁal Sample
Sample ~B??§'lﬁr§u Sample Index (i5:10) gl voJ ¢ Index (i7:10)
Index (i5:10) Whdossdbaiabibo oy Index (i7:10) I
[ .. T B
P5 TruSeq 10x UMl TSO R:ean 2:90 TruSeq
: | Read1  8C insert Read 2
P5 TruSeqRead 1 X UMI Poly(dT)VN < TruSeqRead 2
Ba Read 2:90
Insert
Chromium Single Cell 3' Cell Surface Protein Dual Index Library Chromium Single Cell 5' Gene Expression Dual Index Library
Sample [Read 1:28 Sample
Index (i5:10) 10xBC+UMI\ Index (i7:10)
[ B EEEEte—— Sample Read 126 Sample
I . oo b AN ikl
I . e ——
P5 Nextera Read 1 10x UMI  Capture Feature TruSeq Read 2
(Read 1N) Se & Barcode pe TruSeq 10x UMl TSO 5@ TruSeq
Read 2:90° Read 1 E insert  Read2

Source: 10x Genomics

Sequencing Read Number of cycles

— Readl 10x Barcode Read (Cell) 28bp
+ Randomer Read (UMI)

R1 R2

gy

I'II

II

CB UM poly(T) mRNA fragment i7 index Sample index read 10bp
.3- CANCER | CAMBRIDGE 15 index Sample index read 10bp

RESEARCH | INSTITUTE ,
tmf,-; UK Read?2 Insert Read (Transcript) 90bp



o MULTIOMICS AGE

Replacing the Legacy Toolkit Across Biology

RNA T- and B-Cell Receptors

* Microarrays  « Bulk RNA-Seq * Flow cytometry
*gPCR/PCR «ISH + NGS methods

CRISPR Screening Chromatin

CRISPR functional genomics

Epigenomics

« Liquid handlers * ChIP and NGS-based methods

« High content imaging \\{

Proteins
*NGS * Western blots «FACS
« Capillary electrophoresis (CE) == *Affinity columns «CyTOF

« Protein microarrays  « IHC/IF
« Highly Multiplexed

Imaging
* Microscopy

* Microarrays

10X

GENOMICS © 10X GENOMICS, INC. 2021

Source: 10x Genomics

SIGNAL-seq: a multiplexed split-pool combinatorial barcoding method that simultaneously measures

RNA and post-translational modifications (PTMs) in fixed single cells.

Solid-phase Fixed + Perm. Intracellular Stain with
3D Model @ Single Cells Anti-PTM Oligo-mAbs @ @
PTM SPLiT-seq Lyse +
*, J— Purify
cDNA
(9) & y V\“W
- 7 )
) ( J) \/\ —> L‘% 2 = ,;5060
G— 7 \ = ‘
% = 1‘/,',' < k /\{ W 4 p— \"7 vs?oo
— Poly-A=—=aaaa_____
Barcoded BC1BC2BC3
Anti-PTM mRNA rHex =xex e

Antibodies ADT =2 e | PTM

== 77— NGS

TECHNOLOGY FEATURE | 19 July 2021 | Correction 21 July 2021

Single-cell analysis enters the
multiomics age

A rapidly growing collection of software tools is helping researchers to analyse multiple
huge ‘-omics’ data sets.

Point mutation
CNV

) scM&T-seq
Epigenome
DNA methylation scCAT-seq

Chromatin accessibility

Jeffrey M. Perkel

Paired-seq
SNARE-seq

Transcriptome

7~ CITE-seq
REAP-seq

T-ATAC-seq

Proteome Spatial information

Cell surface protein

Kashima Y et al. Exp Mol Med 52, 1419-1427 (2020)

® @ ®

Library Sequence Integrate

Prep. Modalities
RNA BC4 (i7)
=== 77 —» NGS
RNA
+
PTM  B%@ PTM




Characterize RNA, Surface, and Intracellular Proteins in the Same Cell
‘ —-— Our TotalSeg-B conjugates offer a wide selection of targets against important secreted and intracellular proteins and complement
your single-cell multiomics experiment for comprehensive cellular characterization.

IFN-y (Protein) IFN-y (RNA) IL-4 (Protein) IL-4 (RNA)

Enriched CD4 T Cells
® Naive Memory

‘ - Cellular Indexing of Transcriptomes and 'ryzw“ ,:é
Epitopes by Sequencing 5
- CITE-seq uses DNA-barcoded antibodies to
convert detection of proteins into a quantitative, g
sequenceable readout £

cally enriched from PBMCs and stimulated with PMA and lonomycin for six hours in the presence of BFA.

CD4* T cells were magnet

Antibody binding, Single cell droplet encapsulation
washing cells oil

by
ow
AL

TNF-a (Protein) TNF-a (RNA) IL-12p40 (Protein) IL-12B (RNA)

CD11c Positive Cells

@ Classical Monocytes

@ Transitioning Monocytes
@® Non-Classical Monocytes
@ CD1c* Dendritic Cells

® Other

Unstimulated

Qil

.
5
mRNAs and antibody-oligos Size selected cDNA &= > A RE
hybridize to RT oligos and for standard library prep o SIS 7 |- :,:z
are indexed with cell barcode/ | 2 &’ w Z
TPPTTTTTTTTTT N ARRARRARAL v i N ; v .
T TTTTTTT) D14 . g " i y "
__m"”""““w _— cells were magnetically enriched from PBMCs and stimulated with GM-CSF overnight in the presence of LPS and R848, and for the
TTTTTTTTTTTTT AR —— final six hours with BFA.
Size selected antibody .
TTTTTTTTTTTTT . - - - -
oligo products for further Source: Biolegend, TotalSeg-Intracellular-Targets-Info-Sheet
*jﬁ TTTTTTTTTTTTT library prep
I T TTTTTTTT] I . .
e — BioLegend solutions:

4% CANCER | CAMBRIDGE Source: cite-seq.com TotalSeq-A — Poly(dT) based system

g RESEARCH | INSTITUTE _R_3

Wit UK TotalSeqg-B 3, v3.1 Feature barcode
- TotalSeq-C — 5’ v2.0



o CELLHASHING

‘ Reduces cost of running multiple samples by adding hashtag oligos and Genotype-free demultiplexing of pooled single-cell
. . . RNA-
pooling into single channel of 10x chip (10x CellPlex or TotalSeq e
a nt| bod| es) Jun Xu®, Ca]tlm Falconer?, Quan Nguyen®, Joanna Crawford®, Brett D.

McKinnon¢, Sally I\IOIthCkb Alice Peb'l\fg"‘ Alex W. Hewittf&" Anne

Senabouth?, Nathan Palpant®?, Han C luub Stacey Andersen®?, Grant W.
Labeling Pooling Analysis Montgomery®®, Joseph Powell®¢, Lachlan Coin®b-*

‘1 nature methods

Article | Published: 17 June 2019

| Semples - Labeling o o G MULTI-seq: sample multiplexing for
, _ _ single-cell RNA sequencing using lipid-
Allows overloading as by sequencing tags alongside the cellular tagged indices

transcrlptome’ We Can aSSIgn eaCh Ce” to ItS Sample Of Orlgln’ and Christopher S. McGinnis, David M. Patterson, Juliane Winkler, Daniel N. Conrad,
rOb ustly |dent|fy dOUbletS Or|g| nat|ng from mU|t| ple Samples Marco Y. Hein, Vasudha Srivastava, Jennifer L. Hu, Lyndsay M. Murrow, Jonathan S.

- Weissman, Zena Werb, Eric D. Chow &3 & Zev J. Gartner &3

Nature Methods 16, 619-626(2019) | Cite this article

L] L[]
% . -'.-.. .'...' 15k Accesses | 27 Citations |85 Altmetric | Metrics
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scRNA-seq assessment of the human lung, spleen, and esophagus
tissue stability after cold preservation
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Cryopreservation of human cancers conserves tumour
heterogeneity for single-cell multi-omics analysis
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10x Fixed RNA Profiling

new chemistry, compatible with formaldehyde fixed samples
RNA is captured using probes, not poly(d)T like in 3’ solution
Available for human (~18k genes) and mouse (~20k genes)
only

Probes contain barcodes so no additional staining needed
for cell hashing

Kit potentially opens the door to archival material (FFPE
blocks)

pre-print: snPATHO-seq: unlocking the FFPE archives for
single nucleus RNA profiling
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SplitSeq (Parse Bioscience) requires fixation as well




o 10X ATAC

®
' Chromium Single Cell ATAC libraries comprise double stranded DNA fragments
which begin with P5 and end with P7. Sequencing these libraries produces a standard
Ilumina® BCL data output folder. i7:8
i5:146 bp lsnal::lrlhi
, Read IN_ ™, \ o
I o i
mess—  E——— —— "
P& n . . Read 1N —t = Read 2N Read 2N .
Sequencing | Description Number of - Nucle
Enzyme
Read cycles
Inside Individual GEM
Readl Insert Sequence 1IN 50bp ot e SRS
& PS5 Read IN Read 2N :
I7 index Sample index read 8bp 0 Se— —
i5 index 10x Barcode Read (Cell) 16bp
S — e
Read2 Insert Sequence 2N 50bp

Denaturation, Linear Amplification |

(opposite end)

- ASAP-seq is to scATAC-seq what CITE- | A e

seq is to scRNA-seq. i S— o—
CANCER CAMBRIDGE ~ _ e _ ‘nre-i i i "5 10x Read IN oot Read 2N
RESEARCH | INSTITUTE Scale Blosuences' F’)re indexing of nuclei PS5 i0x Read N . sy

through tagmentation” = 100k nuclei per 10x Barcoded DNA Fragments

10x channel with low number of doublets Source: 10x Genomics



®, 10X MULTIOME (RNA+ATAC

Profiling Different Modalities To Gain Deeper Insights  Dive Deep Where It Matters
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-TEA-seq (Transcription, Epitopes, and Accessibility) = Multiome
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® SPATIAL TRANSCRIPTOMICS

® 0 ,E

Visium: 55ul spots -> 1 and 10 cells captured per spot

° @
Y
. oS
.:. o.. o
o e o e = :
. » w i /’/. P lte::g/t:;ss'lﬁution of KI.%S slldi'si;lwts Annotation directly on H&E image Captured H&E image from the microscope
Spatial heterogeneity LN ; & Developmental spatial e G thelc e g oo el |
in diseases %/t"anscf\p"O(o blueprint Source: 10x Genomics

Trends In Blotachnology

Figure 3. Applications for Spatially Resolved Transcriptomics. Three primary kinds of hot issues can be resolved by
spatially resolved transcriptomics: left, discovering spatial heterogeneity of diseases; middle, establishing spatial
transcriptome atlases for the human body; and right, delineating an embryonic developmental and spatial blueprint.

Source: Liao et al. Trends in Biotechnology. (2020) -
oo —
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: 2 pum . 2 um ;
Visium HT:
CANCER CAMBRIDGE R
R~ RESEARCH | INSTITUTE
o ’.‘ % ." U K Capture area with Grid of 2 x 2 um barcoded squares, Oligo with Spatial Barcode
Visium HD slide, continuous lawn of oligos, binned to 8 x 8 um

6.5 mm 6.5 x 6.5 mm Source: 10x Genomics



®_ SPATIAL TRANSCRIPTOMICS

Tissue profiling with transcriptomics and protein co-detection The Challenge of FFPE Samples

Standard Visium

Whole Transcriptome Fresh Frozen

FFPE tissue preservation

Whole transcriptome degrades RNA

detection via probe-based .
RNA Template Ligation s
(RTL) technology Multiplexed Protein e "0\ :
A .
Co-detect 31 intracellular ) \~ 3

and extracellular immune

markers using oligo-tagged

antibody pane| eeosoaoee Standard Visium

Tissue Morphology with FFPE

Reads per spot

Utilize H&E or IF staining

to profile tissue biology L . L
- Visium FFPE uses probe based chemistry similarly

to Fixed RNA profiling for single cell
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« EXPERIMENTAL DESIGN

Confounded design
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Sequencer lanes

Plates

Sequencer lanes

Source: Baran-Gale et al. Brief Func Genomics. 17 (4):233—-239. (2018)
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I. Tissue Procurement

Source:

- Primary human
- Model organism
- Cell culture

Il. Tissue Dissociation
= B @ Method:

Key considerations:
- Biological variation
- Sampling/handling variation - Technical replicates
- Duration of sourcing

- Key considerations:
0 @@ ® - Mechanical mincing - Experimental consistency
< (®)_<® - Enzymatic digestion - Shortest duration

Study design:
- Biological replicates

- Cell number calculation
- Workflow optimization

Quality control:
- FACS analysis
- qPCR for marker genes

@@ *@ -Automated blending - Highest cell/nucleus quality - Imaging of cell integrity
(0 - Microfluidics devices - Representation of all cell types - RNA quality (RIN)

lll. Cell Enrichment (optional)

hod:
4 ®® Method.

- Dead cell removal

IV. Single Cell RNAseq Platform
Method:
- Droplet-based
209qW - Tube-based after FACS
. - Microwell-based
- Microfluidics-enabled

V. Library Sequencing
2%, Method:
oS - llumina NGS

S ¥t - Compatible with cDNA library

VI. Computational Analysis
5 Key considerations:

D . - Differential centrifugation, sedimentation, filtration
() (® - Antibody labeling for positive/negative selection
@ - Flow cytometry or bead-based enrichment

Key considerations:

- Additional handling

- Longer duration

- Loss of RNA quality

- Transcriptome changes

Key considerations:

- Cell throughput and handling time

- Gene coverage and cell type detection
- Whole transcript versus 3’end counting
- Imaging capability for doublet detection

Sequencing depth considerations:

- 3’end counting: low depth ~50K RPC

- Whole transcript: high depth ~1M RPC

- Alternative splicing: ~20-30M RPC

- Iterative optimization for biological system

Sample Batch correction approaches:

- Separation of batch and condition - Cell Hashing
% - Technical vs. biological variation - Demuxlet

- Canonical correlation analysis (CCA)
- MAST

Source: Nguyen QH et al. Front Cell Dev Biol 6:108. (2018)




® WHAT PLATFORM SHOULD | USE?
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Choose protocol based on:

- Throughput (number of cells per reaction)

- Sample of origin

- Cost / Labour / Time limitations

- Gene body coverage: 5’/ 3’ biased or full-length?
- UMI vs no-UMI

- Sequencing depth per cell

Examples:

If you sample is fairly homogeneous — bulk RNAseq

If your sample is limited in cell number — plate-based method

If you want re-annotate the transcriptome and discover new isoforms — full-length
coverage (SMART-seq2, seqWell)

If you are looking to classify all cell types in a diverse tissue - high throughput

If you have only archival human samples — nuclei isolation or 10x fixed RNA profiling
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USEFUL RESOURCES:

* ASingle-Cell Sequencing Guide for Immunologists. Frontiers in immunology, 9, 2425.
(2018).

* Single-cell immune profiling of - gamma-delta T-cells (https://shorturl.at/IXEjc)

* Vande Sande et al. Applications of single-cell RNA sequencing in drug discovery and
development. Nat Rev Drug Discov (2023).

* Haque et al. A practical guide to single-cell RNA-sequencing for biomedical research
and clinical applications. Genome Med. 2017;9(1):75.

* Single cell course by Hemberg Lab, Wellcome Sanger Institute (http://hemberg-
lab.github.io/scRNA.seq.course/index.html)

* Tabula Muris (https://tabula-muris.ds.czbiohub.org/)

* Human Cell Atlas (https://www.humancellatlas.org/)

*  Worthington Tissue Dissociation Guide

* (http://www.worthington-biochem.com/tissuedissociation/default.html)

* Broad Institute Single Cell Portal (https://singlecell.broadinstitute.org/single_cell)

* List of software packages for single cell data analysis
(https://github.com/seandavi/awesome-single-cell)

*  SPLIT-seq (https://www.youtube.com/watch?v=WqgaeZe7mKUc)

* CITE-seq (https://cite-seq.com/)

* Biolegend TotalSeq (https://www.biolegend.com/en-us/totalseq)

* CanchatGPT do single-cell bioinformatic analysis?
https://www.youtube.com/watch?v=FfkuLFIC2ZWk
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