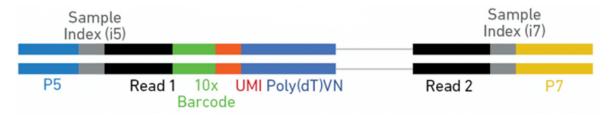


Alignment and feature counting

September 2022

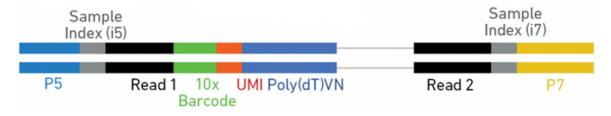
Single Cell RNAseq Analysis Workflow



10x library file structure

The 10x library contains four pieces of information, in the form of DNA sequences, for each "read".

- sample index identifies the library, with one or two indexes per sample
- **10x barcode** identifies the droplet in the library
- UMI identifies the transcript molecule within a cell and gene
- insert the transcript molecule



Raw fastq files

The sequences for any given fragment will generally be delivered in 3 or 4 files:

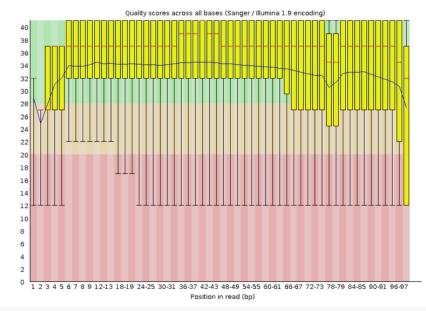
- **I1:** I7 sample index
- 12: 15 sample index if present (dual indexing only)
- R1: 10x barcode + UMI
- R2: insert sequence

QC of Raw Reads - FASTQC

FastQC Report

Summary

Basic Statistics
 Per base sequence quality


Per tile sequence quality
 Per sequence quality scores
 Per base sequence content
 Per sequence GC content
 Per base N content
 Sequence Length Distribution
 Sequence Duplication Levels
 Overrepresented sequences

Adapter Content

Basic Statistics

Measure	Value	
Filename	SRR9264344_S0_L001_R2_001.fastq.g	
File type	Conventional base calls	
Encoding	Sanger / Illumina 1.9	
Total Sequences	330404706	
Sequences flagged as poor quality	0	
Sequence length	98	
%GC	46	

Per base sequence quality

QC of Raw Reads - MultiQC - General Statistics

MultiQC v1.7

General Stats

Sequence Counts

Sequence Quality Histograms

Per Sequence Quality Scores
Per Base Sequence Content

Per Sequence GC Content Per Base N Content

Sequence Length Distribution Sequence Duplication Levels Overrepresented sequences Adapter Content

FastQC

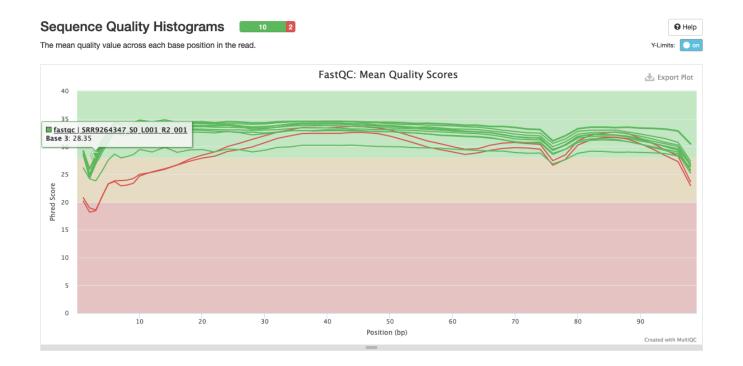
<u>MultiQC</u>

A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

Report generated on 2020-07-07, 15:07 based on data in:

/mnt/scratchb/bioinformatics/baller01/20200511_FernandesM_ME_crukBiSs2020/Data/CaronBourque2020/fastqc/SRR9264343_S0_L001_R2_001_fastqc.zip
 /mnt/scratchb/bioinformatics/baller01/20200511_FernandesM_ME_crukBiSs2020/Data/CaronBourque2020/fastqc/SRR9264344_S0_L001_R2_001_fastqc.zip

don't show again


Welcome! Not sure where to start? Watch a tutorial video (6:06)

General Statistics

Ji Copy table III Configure Columns III Plot Showing 12/12 rows and 3/5 columns.			
Sample Name	% Dups	% GC	M Seqs
fastqc SRR9264343_S0_L001_R2_001	61.5%	47%	211.0
fastqc SRR9264344_S0_L001_R2_001	70.0%	46%	330.4
fastqc SRR9264345_S0_L001_R2_001	71.1%	48%	332.1
fastqc SRR9264346_S0_L001_R2_001	69.9%	49%	301.2
fastqc SRR9264347_S0_L001_R2_001	18.4%	46%	310.9
fastqc SRR9264348_S0_L001_R2_001	51.6%	47%	324.6
fastqc SRR9264349_S0_L001_R2_001	58.4%	47%	325.4
fastqc SRR9264350_S0_L001_R2_001	63.0%	47%	324.4
fastqc SRR9264351_S0_L001_R2_001	7.3%	48%	214.6
fastqc SRR9264352_S0_L001_R2_001	19.3%	44%	274.2
fastqc SRR9264353_S0_L001_R2_001	64.6%	49%	314.0
fastqc SRR9264354_S0_L001_R2_001	71.8%	47%	324.3

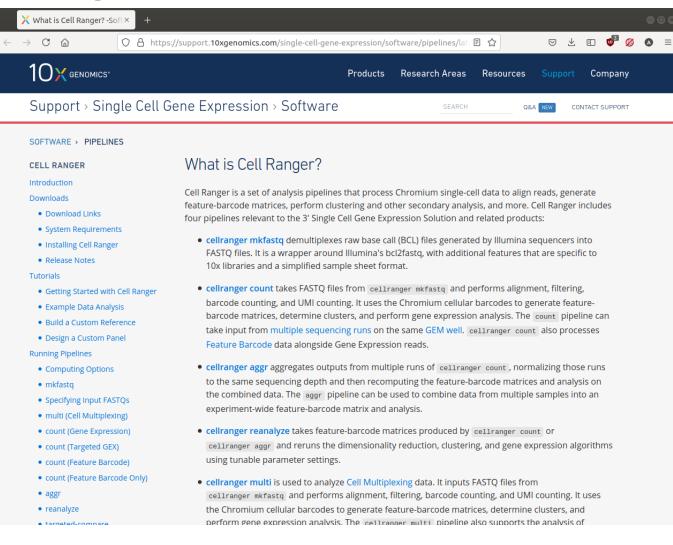
QC of Raw Reads - MultiQC - Sequence Quality Histograms

Alignment and counting

The first steps in the analysis of single cell RNAseq data:

- Align reads to genome
- Annotate reads with feature (gene)
- Quantify gene expression

Cell Ranger


- 10x Cell Ranger This not only carries out the alignment and feature counting, but will also:
 - Call cells
 - Generate a summary report in html format
 - Generate a "cloupe" file

Alternative methods include:

- STAR solo:
 - Generates outputs very similar to CellRanger minus the cloupe file and the QC report
 - Will run with lower memory requirements in a shorter time than Cell Ranger
- Alevin:
 - Based on the popular Salmon tool for bulk RNAseq feature counting
 - Alevin supports both 10x-Chromium and Drop-seq derived data

Obtaining Cell Ranger

Cell Ranger tools

Cell Ranger includes a number of different tools for analysing scRNAseq data, including:

- cellranger mkref for making custom references
- cellranger count for aligning reads and generating a count matrix
- cellranger aggr for combining multiple samples and normalising the counts

Preparing the raw fastq files

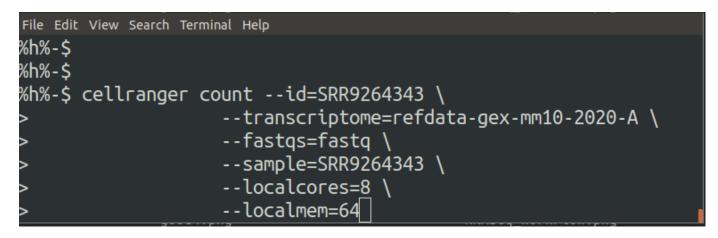
Cell Ranger requires the fastq file names to follow a convention:

<SampleName>_S<SampleNumber>_L00<Lane>_<Read>_001.fastq.gz

e.g. for a single sample in the Caron data set we have:

SRR9264343_S0_L001_I1_001.fastq.gz SRR9264343_S0_L001_R1_001.fastq.gz SRR9264343_S0_L001_R2_001.fastq.gz

Genome/Transcriptome Reference


As with other aligners Cell Ranger requires the information about the genome and transcriptome of interest to be provided in a specific format.

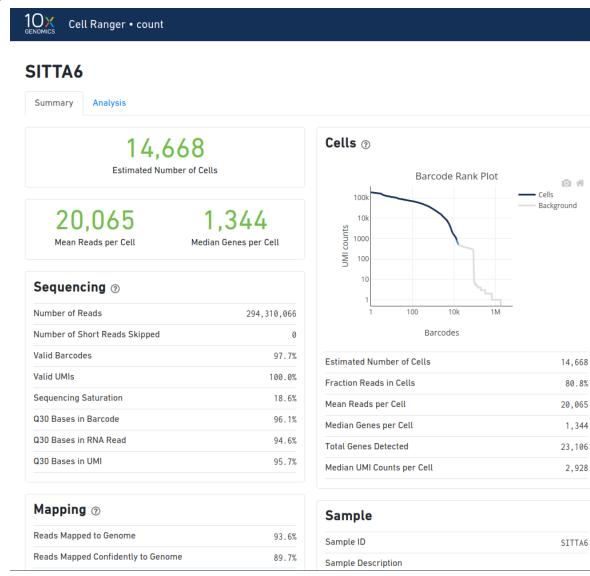
- Obtain from the 10x website for human or mouse (or both PDX)
- Build a custom reference with cellranger mkref

Running cellranger count

- Computationally very intensive
- High memory requirements

• One directory per sample

File Edit View Search Terminal Help
%h%-\$
%h%-\$ ls SRR9264343/
cmdline
filelist
finalstate
invocation
_jobmode
log
_rog mrosource
outs
_perf
SC_RNA_COUNTER_CS
sitecheck
SRR9264343.mri.tgz
_tags
_timestamp
_uuid
_vdrkill
_versions
%h%-\$


File Edit View Search Terminal Help
__Versions
%h%-\$
%h%-\$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-\$

File Edit View Search Terminal Help
__Versions
%h%-\$
%h%-\$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw feature bc matrix.h5
web_summary.html
%h%-\$

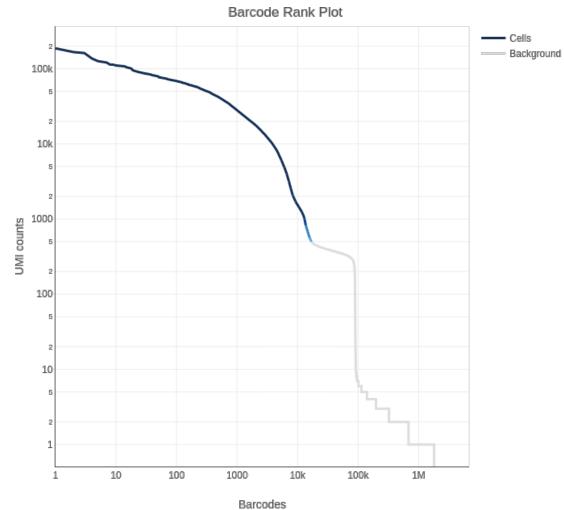
Cell Ranger report

File Edit View Search Terminal Help
__Versions
%h%-\$
%h%-\$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-\$

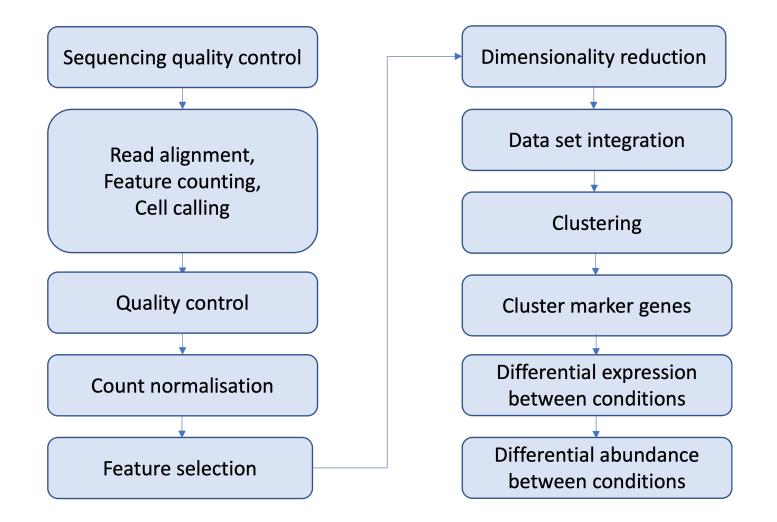
Loupe Browser

File Edit View Search Terminal Help
__Versions
%h%-\$
%h%-\$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-\$

File Edit View Search Terminal Help
__Versions
%h%-\$
%h%-\$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam


File Edit View Search Terminal Help versions %h%-\$ %h%-\$ ls SRR9264343/outs/ cloupe.cloupe filtered_feature_bc_matrix.h5 metrics_summary.csv molecule_info.h5 possorted_genome_bam.bam possorted_genome_bam.bam.bai raw_feature_bc_matrix.h5 web_summary.html %h%-\$ %h%-\$ ls SRR9264343/outs/raw_feature_bc_matrix %h%-\$

File Edit View Search Terminal Help
__Versions
%h%-\$
%h%-\$ ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-\$



Cell Ranger cell calling

Single Cell RNAseq Analysis Workflow

