Introduction to Bioinformatics

Cambridge Makerere Summer School 2024 Ashley D Sawle

Together we will beat cancer

Overview

- A Brief Overview of Bioinformatics
- Bioinformatic Analysis of Next Generation Sequencing Data

Overview

• **A Brief Overview of Bioinformatics**

• Bioinformatic Analysis of Next Generation Sequencing Data

- Bioinformatics is a relatively new and evolving discipline that combines skills and technologies from computer science and biology to help us better understand and interpret biological data.
- Bioinformatics, as related to genetics and genomics, is a scientific subdiscipline that involves using computer technology to collect, store, analyze and disseminate biological data and information
- The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.

- Bioinformatics is a relatively **new and evolving** discipline that combines skills and technologies from computer science and biology to help us better understand and interpret biological data.
- Bioinformatics, as related to genetics and genomics, is a scientific subdiscipline that involves **using computer technology to collect, store, analyze and disseminate biological data and information**
- The mathematical, statistical and computing methods that aim **to solve biological problems using DNA and amino acid sequences** and related information.

Bioinformatics is an **interdisciplinary** field of science that develops methods and software tools for understanding biological data, especially when the data sets are large and complex.

It all started with proteins

• 1951 – Frederick Sanger sequenced the amino acid structure of insulin

It all started with proteins

It all started with proteins …

- 1951 Frederick Sanger sequenced the amino acid structure of insulin
- 1962 Margaret Dayhoff and Robert Ledley publish COMPROTEIN
- 1965 Margaret Dayhoff published the book "Atlas of Protein Sequence and Structure"
- 1970 Needleman-Wunsch algorithm for sequence alignment published
- 1970s Peter Chou and Gerald Fasman develop first protein structure prediction algorithm
- 1971 The Protein Data Bank

… and it continues with proteins

The Nobel Prize in Chemistry 2024

David Baker

"for computational protein design"

David Baker. Ill. Niklas Elmehed © Nobel Prize Outreach

Demis Hassabis

"for protein structure prediction"

Demis Hassabis. Ill. Niklas Elmehed © Nobel Prize Outreach

John Jumper

"for protein structure prediction"

John Jumper. Ill. Niklas Elmehed © Nobel Prize Outreach

A history of nucleotide sequencing

The era of big data

The era of big data

Data storage and Access

- Verification of results presented in papers requires access to the data used to generate them
- Data generated in one study can still be useful to other
- Open Data rather than siloed inaccessible data

Open Access | Published: 15 March 2016

The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie

Scientific Data 3, Article number: 160018 (2016) Cite this article

Findable **A**ccessible **I**nteroperable Reusable

A word on gene names

Genomic Sequence Data

UCSC/NCBI versus Ensembl/Gencode/EBI

• Ensembl uses a one-based coordinate system, whereas UCSC uses a zero-based coordinate system.

- Ensembl/Gencode name sequences : 1, 2, 3 … 22, X, Y, MT
- UCSC/NCBI name sequences: chr1, chr2, chr3 … chr22, chrY, chrX, chrM
- Gene annotations differ significantly
- Gene IDs are different and do not map 1:1

The era of big data

Programming languages in Bioinformatics

- Bioinformatics creates huge quantities of data, and programming gives the means to analyse and interpret that data.
- The two most popular languages are **Python** and **R**
- Both are open source meaning they are freely available
- Both have large communities of users and developers
- Both have a wide range of bioinformatics resources and methods
- Both are cross-platform
- Others: Perl, Java, Ruby, Rust, Julia

- R is a language and environment for **statistical computing and graphics**
- R is available as Free Software under the terms of the Free Software Foundation's **GNU General Public License**
- **RStudio** provides a well developed integrated development environment (IDE) for R
- The Comprehensive R Archive Network (**CRAN**) repository features 19877 available general usage packages
- The **Bioconductor** project has 2230 bioinformatics specific packages

P python

- Python is a **general-purpose**, open-source programming language used in various software domains, including data science, web development, and gaming
- Python is developed under an **OSI-approved open source license**, making it freely available
- Various IDEs are available, e.g. **Jupyter** or Spyder
- 100,000s of packages available via the **Python Package Index**
- Virtual environments easily managed with **Conda**
- Python is more suitable for **deep learning** applications

BIOCONDA®

Excel tries to be helpful

Comment | Open Access | Published: 23 August 2016

Gene name errors are widespread in the scientific literature

Mark Ziemann, Yotam Eren & Assam El-Osta

Genome Biology 17, Article number: 177 (2016) Cite this article

NEWS | 13 August 2021 | Correction 25 August 2021

Autocorrect errors in Excel still creating genomics headache

Despite geneticists being warned about spreadsheet problems, 30% of published papers contain mangled gene names in supplementary data.

The Verge CIENCE / TECH / MICROSOFT

Scientists rename human genes to stop **Microsoft Excel from misreading them as** dates

Sometimes it's easier to rewrite genetics than update Excel

By James Vincent, a senior reporter who has covered AI, robotics, and more for eight years at The Verge Aug 6, 2020, 1:44 PM GMT+1 | 0 Comments / 0 New

If you buy something from a Verge link. Vox Media may earn commission. See our ethics statement.

Illustration by Alex Castro / The Verge

There are tens of thousands of genes in the human genome: minuscule twists of DNA and RNA that combine to express all of the traits and characteristics that make each of us unique. Each gene is given a name

 $MARCHI$ \rightarrow $MARCHF$] SEPTI → SEPTINI

The era of big data

The need for more power

- Massive data sets require a lot memory to store and process
- Complex algorithms such as alignment need powerful processors to run in a reasonable time frame
- Having a lot of processors available means that many jobs can be run in parallel
- High-Performance Cluster HPC (supercomputer)
- Cloud solution Google Cloud, Amazon Web Services (AWS), Microsoft Azure
- Graphics Processing Units required for Deep Learning

The era of big data

Differing statistical approaches

- Single/Few measures in a simple experimental design t-test
- More complex studies Linear Model
	- Micro-arrays Simple Linear Model with Normal Distribution
	- RNAseq data Generalised Linear Model with Negative Binomial Distribution
- 10X Single Cell RNAseq needs additional solutions to overcome missing data

Complex Data Requires New Solutions

- Sequence alignment algorithms
- Clustering algorithms
- Hidden Markov Models (HMMs)
- Phylogenetic tree construction algorithms
- Molecular modelling algorithms
- Variant/Mutation calling algorithms
- Deep learning, large language models and machine learning

Overview

- A Brief Overview of Bioinformatics
- **Bioinformatic Analysis of Next Generation Sequencing Data**

Data literacy

The ability to not only carry out statistical analysis on real-world problems, but also to understand and critique any conclusions drawn by others on the basis of statistics.

What we do…

The PPDAC cycle

• Look for patterns

Consequences of Poor Experimental Design

Inability to answer the questions we would like to answer

- Cost of experimentation.
- Limited & Precious material, esp. clinical samples.
- Immortalization of data sets in public databases and methods in the literature. Our bad science begets more bad science.
- Ethical concerns of experimentation: animals and clinical samples.

A Well-Designed Experiment

Should have:

- Clear objectives
- Focus and simplicity
- Sufficient power
- Randomised comparisons

And be:

- Precise
- Unbiased
- **Amenable to statistical analysis**
- Reproducible

Sources of Variation

Biological "noise":

- Biological processes are inherently stochastic
- Single cells, cell populations, individuals, organs, species….
- Timepoints, cell cycle, synchronized vs. unsynchronized

Technical noise:

- Reagents, antibodies, temperatures, pollution
- Platforms, runs, operators

Replication is required to capture variance \blacksquare . The Randomisation overcomes technical variation

Randomisation

https://www.goldenhelix.com/blog/stop-ignoring-experimental-design-or-my-head-will-explode/
• We'll focus on Illumina short read sequencing as this is the most commonly used method at the moment

Library preparation

Library preparation

Sequencing by synthesis

- A complimentary strand is synthesized using the cDNA fragment as template.
- Each nucleotide includes a fluorescent tag and as the new strand is synthesized, the colour of the fluorescence indicates which base is being added.
- The sequencer records the order of these flashes of light and translates them to a base sequence.

Sequencing by synthesis

Fastq file format

@LH00417:64:22MCGJLT3:3:1101:12206:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTTGACATTGTACTCGGCAGAAGATGTGCGGGCCAGGCTGCTCTGCCACTGGGCCTCAGGGATAGAGGTGCTGAGCCATCGAGCCGAGCGCGGCCGTGG $+$ @LH00417:64:22MCGJLT3:3:1101:12410:1064 1:N:0:GATCAAGGCA+ATTAACAAGG @LH00417:64:22MCGJLT3:3:1101:12798:1064 1:N:0:GATCAAGGCA+ATTAACAAGG TNTGACGATGTTAGCGGTTACTCTTCATTGCTTCTTTAGCTGCCAGGATCAGTGGCGTCAAGCTAGACAATGGTTTGGCCAGTTTCAGGAAAGGATGCTG @LH00417:64:22MCGJLT3:3:1101:13963:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTTCCTTTCAGCCAGTGCCTGCACAGATGAAGCTGACATCTGATCCTTCATGTCCCTGACAATTTGCCGAGTACTTGTGATGAAGGCTTTTCTTATGCT @LH00417:64:22MCGJLT3:3:1101:14000:1064 1:N:0:GATCAAGGCA+ATTAACAAGG GNAGCTTCTCTTTGATGGTCCGGTGTGGGTCGATCTCAATGGGATAATAGTGGTGAAAGAGCTCGGTGAGCTCTTTGCGACAATCCTCACTGATAATTTT @LH00417:64:22MCGJLT3:3:1101:14740:1064 1:N:0:GATCAAGGCA+ATTAACAAGG ANTCTTCTCACTGGTGCCAACAGAAAGTCTGTACTCGATGTCTGCCATTTTGGTCAATAAGTGTATCCGAACTGAAGATGGAAAGTCAACTCTGTGTACA @LH00417:64:22MCGJLT3:3:1101:15295:1064 1:N:0:GATCAAGGCA+ATTAACAAGG TNAGGTCTCTCACCTCCGGGGCCGTAGCGGACGCCTTAGCAGCGGCATTCTGGGACAATCCCCGGCCGCGGGGACCAGCTTCCAATACCTAACTGTCTC @LH00417:64:22MCGJLT3:3:1101:16312:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTGGCCTGCACACTCAAAGAGCAGCTCTCCATCACCGAGCCTCCACACGAAGGCCTTGTCGTCTTCGCCCCCTGTCACTGCCAAGGTGTTGGTTTTGGG $+$ @LH00417:64:22MCGJLT3:3:1101:16404:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNAACTATGAACTGAGCTCTGCCCATAGCTTCCAGAGAGCAGAGGAAATGGTTCTAAGCTAAACACCCACACTACGTGGTGGCAATGAGCCCGTTATCAA

Fastg file format - Headers

@LH00417:64:22MCGJLT3:3:1101:12206:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

CNTTGACATTGTACTCGGCAGAAGATGTGCGGGCCAGGCTGCTCTGCCACTGGGCCTCAGGGATAGAGGTGCTGA(

@LH00417:64:22MCGJLT3:3:1101:12410:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

0LH00417:64:22MCGJLT3:3:1101:12798:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

TNTGACGATGTTAGCGGTTACTCTTCATTGCTTCTTTAGCTGCCAGGATCAGTGGCGTCAAGCTAGACAATGGTT1 $\ddot{}$

0LH00417:64:22MCGJLT3:3:1101:13963:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

TCCTTTCAGCCAGTGCCTGCACAGATGAAGCTGACATCTGATCCTTCATGTCCCTGACAATTTGCCGAGTAC1

TTTTTTTTTTTTT

Fastg file format - Sequence

@LH00417:64:22MCGJLT3:3:1101:12206:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

CNTTGACATTGTACTCGGCAGAAGATGTGCGGGCCAGGCTGCTCTGCCACTGGGCCTCAGGGATAGAGGTGCTGA

@LH00417:64:22MCGJLT3:3:1101:12410:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

0LH00417:64:22MCGJLT3:3:1101:12798:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

TGACGATGTTAGCGGTTACTCTTCATTGCTTCTTTAGCTGCCAGGATCAGTGGCGTCAAGCTAGACAATGGTT

9# 0LH00417:64:22MCGJLT3:3:1101:13963:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

TTCCTTTCAGCCAGTGCCTGCACAGATGAAGCTGACATCTGATCCTTCATGTCCCTGACAATTTGCCGAGTAC

Fastg file format - Line 3

0LH00417:64:22MCGJLT3:3:1101:12206:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTTGACATTGTACTCGGCAGAAGATGTGCGGGCCAGGCTGCTCTGCCACTGGGCCTCAGGGATAGAGGTGCTGA(E

0LH00417:64:22MCGJLT3:3:1101:12410:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

E 0LH00417:64:22MCGJLT3:3:1101:12798:1064 1:N:0:GATCAAGGCA+ATTAACAAGG TNTGACGATGTTAGCGGTTACTCTTCATTGCTTCTTTAGCTGCCAGGATCAGTGGCGTCAAGCTAGACAATGGTT1

0LH00417:64:22MCGJLT3:3:1101:13963:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTTCCTTTCAGCCAGTGCCTGCACAGATGAAGCTGACATCTGATCCTTCATGTCCCTGACAATTTGCCGAGTAC1 E

E

Fastg file format - Headers

@LH00417:64:22MCGJLT3:3:1101:12206:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTTGACATTGTACTCGGCAGAAGATGTGCGGGCCAGGCTGCTCTGCCACTGGGCCTCAGGGATAGAGGTGCTGA(

0LH00417:64:22MCGJLT3:3:1101:12410:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

0LH00417:64:22MCGJLT3:3:1101:12798:1064 1:N:0:GATCAAGGCA+ATTAACAAGG

TNTGACGATGTTAGCGGTTACTCTTCATTGCTTCTTTAGCTGCCAGGATCAGTGGCGTCAAGCTAGACAATGGTT1

 $\ddot{}$

19#I I

0LH00417:64:22MCGJLT3:3:1101:13963:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTTCCTTTCAGCCAGTGCCTGCACAGATGAAGCTGACATCTGATCCTTCATGTCCCTGACAATTTGCCGAGTAC1

+

(Phred) Quality Scores

Sequence quality scores are transformed and translated p-values

Sequence bases are called after image processing (base calling):

- Each base in a sequence has a p-value associated with it
- p-values range from 0-1 (e.g.: 0.05, 0.01, 1e-30)
- p-value of 0.01 implies 1 in 100 chance that called base is wrong

(Phred) Quality Scores …

How do we assign p-values to bases in the fastq file?

- P-vales can be many characters long (e.g.:0.000005)
- Transform to Phred quality scores $-Q = -10x$ log10(pvalue) :

If $p = 0.01 \rightarrow log10(0.01) = -2 \rightarrow Q = 20$

- Translate Q values to ASCII characters (adding 33): Q value of $2 = #$, Q value of $40 =$ I
- This gives us a single digit quality score code for each base that fits nicely in the fastq format

QC is important

Check for any problems before we put time and effort into analysing potentially bad data

Start with FastQC:

- Quick
- Outputs an easy-to-read html report

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Per base sequence quality

Quality scores across all bases (Illumina 1.5 encoding)

Per base sequence content

Per sequence GC content

Read Alignment

AIM: Given a reference sequence and a set of short reads, align each read to the reference sequence finding the most likely origin of the read sequence.

Read Alignment

- 1970 Needleman-Wunsch algorithm for sequence alignment published
- The Smith-Waterman algorithm was the first alignment algorithm to include the concept of gaps Initialize the scoring matrix
- Faster less computationally intensive alignment algorithms have been developed
- Aligners also use indexes of the genome to speed up alignment

Short Read Aligners

There are a lot of short read aligners, which use a variety of indexing algorithms and alignment algorithms.

The most popular are probably:

- The Burrows-Wheeler Aligner (BWA) https://github.com/lh3/bwa
- Bowtie2 https://github.com/BenLangmead/bowtie2
- STAR https://github.com/alexdobin/STAR
- HISAT2 http://daehwankimlab.github.io/hisat2/

Ref A

TTGCCACGTAACCGTTACGCTAAGTACT **Read**

Ref A Λ \mathbf{L} $\mathsf{D}\mathsf{I}$ **Read** Τ

mRNAseq Alignment

Short Read Aligners

There are a lot of short read aligners, which use a variety of indexing algorithms and alignment algorithms.

The most popular are probably:

- The Burrows-Wheeler Aligner (BWA) DNA
- Bowtie2 DNA
- STAR Either
- HISAT2 Either

Sequence Alignment/Map (SAM) format is the standard format for files containing aligned reads.

Two main parts:

- Header meta data (source of the reads, reference genome, aligner, etc.)
- Alignment section:
	- 1 line for each alignment
	- contains details of alignment position, mapping, base quality etc.
	- 11 required fields, but other content may vary depending on aligner and other tools used to create the file

20546017 60 1S5M1N89M236N5M = 20547099 ATGTTGATGACAGCCGTCTTGAGGAGCTCAAAGCCACATTGCCCAGCCCAGACAAGTTACCCGGATTTAAGATGTACCCCATTGAT 1416 TTTGAGAAGGATGA TTTTTTTTTTTTTTTTTTTTTT NH:1:1 HI:1:1 AS:1:200 nM:i:0 LH00417:64:22MCGJLT3:3:1101:24078:1064 83 x 20547099 12M236N86M2S 60 20546017 $=$ -1416 GATTTTGAGAAGGATGATGACAGCAATTTCCACATGGATTTCATTGTGGCTGCATCCAATCTTCGGGCCGAAAACTATGATATTTC CCCTGCAGACCGNG NH:i:1 HI:i:1 AS:i:200 $nM: i:0$ IIIIIIIIIIIIIIIIIIII#9 LH00417:64:22MCGJLT3:3:1101:25280:1064 163 1 $53D21M2D26M =$ 34964132 60 4964187 155 AAG TG NH:i:1 HI:i:1 AS:i:175 $nM: i:0$ T9TTT-TTTT LH00417:64:22MCGJLT3:3:1101:25280:1064 83 1 34964187 $21M2D77M2S =$ 4964132 -155 60 GTGTNG TITITITITIII#9 NH:i:1 HT:i:1 AS:i:175 $nM: i:0$

 $LH00417:64:22MCGJLT3:3:1101:24078:1064$ 163 X 20546017 60 1S5M1N89M236N5M = 20547099 1416 ATGTTGATGACAGCCGTCTTGAGGAGCTCAAAGCCACATTGCCCAGCCCAGACAAGTTACCCGGATTTAAGATGTACCCCATTGAT TTTGAGAAGGATGA NH:i:1 HI:i:1 AS:i:200 nM:i:0 IIIIIIIIIIIIIIIIIIIIIII LH00417:64:22MCGJLT3:3:1101:24078:1064 83 X 20547099 60 12M236N86M2S 20546017 -1416 GATTTTGAGAAGGATGATGACAGCAATTTCCACATGGATTTCATTGTGGCTGCAATCTTCGGGCCGAAAACTATGATATTTC **CCCTGCAGACCGNG** TTTTTTTTTTTTTTTTTTITT#9 nM:i:A NH:i:1 HI:i:1 AS:i:200 LH00417:64:22MCGJLT3:3:1101:25280:1064 163 1 34964132 4964187 155 AAG 60 53D21M2D26M = TG T9TTTT-TTTT NH:i:1 HI:i:1 AS:i:175 $nM: i:0$ LH00417:64:22MCGJLT3:3:1101:25280:1064 83 1 34964187 60 $21M2D77M2S =$ 4964132 -155 GTGTNG TTTTTTTTTTII#9 $NH:1:1$ $HI:1:1$ $AS:1:175$ nM:i:A

LH00417:64:22MCGJLT3:3:1101:24078:1064 163 X 20546017 60 1S5M1N89M236N5M = 20547099 1416 ATGTTGATGACAGCCGTCTTGAGGAGCTCAAAGCCACATTGCCCAGCCCAGACAAGTTACCCGGATTTAAGATGTACCCCATTGAT **TTTGAGAAGGATGA** ---------------TTTTTTTTTTTTTTTTTTTTTTTT $NH:1:1$ $HI:1:1$ $AS:1:200$ $nM: i:0$ LH00417:64:22MCGJLT3:3:1101:24078:1064 83 X 20547099 60 12M236N86M2S 20546017 $=$ -1416 GATTTTGAGAAGGATGATGACAGCAATTTCCACATGGATTTCATTGTGGCTGCATCCAATCTTCGGGCCGAAAACTATGATATTTC **CCCTGCAGACCGNG** NH:i:1 $H I: i:1$ $AS: i:200$ $nM: i:0$ IIIIIIIIIIIIIIIIIIIII#9 LH00417:64:22MCGJLT3:3:1101:25280:1064 60 4964187 155 AAG 163 1 34964132 $53D21M2D26M =$ **TG** T9TIII-IIII NH:i:1 $HI:ii:1$ $AS: i: 175$ $nM: i:0$ LH00417:64:22MCGJLT3:3:1101:25280:1064 83 1 34964187 $21M2D77M2S =$ 4964132 -155 60 AGAGCCGAGAT **GTGTNG** TITITITITIII#9 $NH: i:1$ $HI: i:1$ $AS:1:175$ $nM: i:0$

QNAME LH00417:64:22MCGJLT3:3:1101:24078:1064 **FLAG** 163 **RNAME X** POS 20546017 MAPQ 60 CIGAR 1S5M1N89M236N5M $RNEXT =$ PNEXT 20547099 **TLEN** 1416 SEQ ATGTTGATGACAGCCGTCTTGAGGAGCTC... QUAL $NH:ii:1$ $HI: i:1$ $AS: i:200$ $nM: i:0$

DNAseq – Somatic Variant Calling

AIM: To identify mutations in the genome

- Whole Genome Sequencing, Whole Exome Sequencing, Targeted Panels
- Sequence paired end with long reads (>=150 bp)
- Remove or mark duplicate reads
- Align to genome including viral decoy sequences, e.g. human cytomegalovirus (CMV), Epstein-Barr virus (EBV)
- Call Single Nucleotide Variants (SNV) and small Insertions/Deletions (Indels)
- Many somatic mutations may have very low variant allele frequency sequence to high depth – 100x coverage
- Differentiate germline variants by including both a tumour sample and a normal sample

DNAseq - Somatic Variant Calling

DNAseq - Somatic Variant Calling

DNAseq - Somatic Variant Calling

Several factors complicate somatic SNV calling

- Low cellularity (tumour DNA content)
- Intra-tumour heterogeneity in which multiple tumour cell populations (subclones) exist
- Aneuploidy
- Unbalanced structural variation (deletions, duplications, etc.)
- Matched normal contaminated with cancer DNA
	- adjacent normal tissue may contain residual disease or early tumourinitiating somatic mutations
	- circulating tumour DNA in blood normals
- Sequencing errors
- Alignment artefacts

Mwenifumbo & Marra, Nat Rev Genet. 2013

DNAseq – Somatic Variant Calling

There are a lot of tools for somatic variant calling.

Some of the most popular are:

- Mutect2 (GATK)
- Strelka
- FreeBayes
- VarDict
- VarScan2

They take different approaches, and it is not uncommon to use multiple tools to call variants and then take a consensus
Using Mutect2 from GATK

- Germline Resource e.g. Gnomad
- If not WGS then intervals list

Variant Call Format (VCF) output

##fileformat=VCFv4.1

##FILTER=<ID=base quality, Description="Average base quality for variant alleles < 25"> ##FILTER=<ID=germline risk, Description="Evidence suggests that the site may be germline, not somatic">

##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype"> ##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read depth at this position in the sample"> ##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed"> ##FORMAT=<ID=BQ,Number=.,Type=Integer,Description="Average base quality for reads supporting alleles">

Hypermutation Signatures in Glioblastoma

Single Cell RNAseq

Average expression level

- Comparative transcriptomics
- Disease biomarker
- Homogenous systems

Separate populations

- Define heterogeneity
- Identify rare cell populations
- Cell population dynamics

Single Cell RNAseq

naturemedicine

Letter | Published: 08 June 2020

A single-cell atlas of the peripheral immune response in patients with severe COVID-19

Aaron J. Wilk, Arjun Rustagi, Nancy Q. Zhao, Jonasel Roque, Giovanny J. Martínez-Colón, Julia L. McKechnie, Geoffrey T. Ivison, Thanmayi Ranganath, Rosemary Vergara,

FTTER

https://doi.org/10.1038/s41586-018-0394-6

A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte

Lindsey W. Plasschaert^{1,5,7}, Rapolas Žilionis^{2,3,7}, Rayman Choo-Wing^{1,5}, Virginia Savova^{2,6}, Judith Knehr⁴, Guglielmo Roma⁴, Allon M. Klein²* & Aron B. Jaffe^{1,5}*

\perp nature

Article | Published: 20 February 2019

A single-cell molecular map of mouse gastrulation and early organogenesis

Blanca Pijuan-Sala, Jonathan A. Griffiths, Carolina Guibentif, Tom W. Hiscock, Wajid Jawaid, Fernando J. Calero-Nieto, Carla Mulas, Ximena Ibarra-Soria, Richard C. V.

Single Cell RNAseq

Figure 1: Scaling of scRNA-seq experiments.

scRNAseq analysis workflow

Trajectory Analysis

81

scRNAseq analysis workflow

Cluster Marker Genes

83

scRNAseq analysis tools

- Alignment, Gene Expression Quantification, Cell Calling, QC:
	- CellRanger (10X), STARsolo, Alevin
- Data Exploration:
	- Loupe Browser (10X)
- Downstream Analysis:
	- R Bioconductor packages: scran, scater, bluster, MiloR, SingleR
		- See the OSCA book at https://bioconductor.org/books/release/OSCA/
	- R Seurat
		- See the Seurat documentation at https://satijalab.org/seurat/
	- Python Scanpy
		- See the Scanpy documentation at https://scanpy.readthedocs.io/en/stable/

What is Bioinformatics?

In the beginning of the 1970s, Ben Hesper and I started to use the term "bioinformatics" for the research we wanted to do, defining it as "**the study of informatic processes in biotic systems**".

Paulien Hogeweg, https://doi.org/10.1371/journal.pcbi.1002021

THANK YOU

CAMBRIDGE
INSTITUTE