# Introduction to Bioinformatics

Cambridge Makerere Summer School 2024 Ashley D Sawle





## Overview

- A Brief Overview of Bioinformatics
- Bioinformatic Analysis of Next Generation Sequencing Data

## Overview

- A Brief Overview of Bioinformatics
- Bioinformatic Analysis of Next Generation Sequencing Data



- Bioinformatics is a relatively new and evolving discipline that combines skills and technologies from computer science and biology to help us better understand and interpret biological data.
- Bioinformatics, as related to genetics and genomics, is a scientific subdiscipline that involves using computer technology to collect, store, analyze and disseminate biological data and information
- The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.

- Bioinformatics is a relatively new and evolving discipline that combines skills and technologies from computer science and biology to help us better understand and interpret biological data.
- Bioinformatics, as related to genetics and genomics, is a scientific subdiscipline that involves using computer technology to collect, store, analyze and disseminate biological data and information
- The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.



Bioinformatics is an **interdisciplinary** field of science that develops methods and software tools for understanding biological data, especially when the data sets are large and complex.



# It all started with proteins

• 1951 – Frederick Sanger sequenced the amino acid structure of insulin

# It all started with proteins

```
N-A-R: Peptide
R-P-G-T-K
                                                          G-N-A-R: Peptide
 A-R-P-G
                                                     K-L-G-N
                                                                   : Peptide
 G-A-R-P
                                                   T-K-L
                                                                   : Peptide
 K-L-G-N
                                         A-R-P-G
                                                                   : Peptide
 G-N-A-R
                                            R-P-G-T-K
                                                                   : Peptide
                                       G-A-R-P
                                                                   : Peptide
  T-K-L
  N-A-R
                                       G-A-R-P-G-T-K-L-G-N-A-R: Protein
```

## It all started with proteins ...

- 1951 Frederick Sanger sequenced the amino acid structure of insulin
- 1962 Margaret Dayhoff and Robert Ledley publish COMPROTEIN
- 1965 Margaret Dayhoff published the book "Atlas of Protein Sequence and Structure"
- 1970 Needleman-Wunsch algorithm for sequence alignment published
- 1970s Peter Chou and Gerald Fasman develop first protein structure prediction algorithm
- 1971 The Protein Data Bank

## ... and it continues with proteins

## The Nobel Prize in Chemistry 2024

#### David Baker

"for computational protein design"



David Baker. Ill. Niklas Elmehed © Nobel Prize Outreach

#### **Demis Hassabis**

"for protein structure prediction"



Demis Hassabis. Ill. Niklas Elmehed © Nobel Prize Outreach

## John Jumper

"for protein structure prediction"



John Jumper. Ill. Niklas Elmehed © Nobel Prize Outreach

# A history of nucleotide sequencing



# The era of big data







The era of big data



## Data storage and Access

- Verification of results presented in papers requires access to the data used to generate them
- Data generated in one study can still be useful to other
- Open Data rather than siloed inaccessible data

Open Access | Published: 15 March 2016

# The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Scientific Data 3, Article number: 160018 (2016) | Cite this article

Findable Accessible Interoperable Reusable

## Data Repositories







RefSeqGene































Genome Aggregation Database







## A word on gene names



## Genomic Sequence Data

UCSC/NCBI versus Ensembl/Gencode/EBI

Ensembl uses a one-based coordinate system, whereas UCSC uses a zero-based coordinate system.

```
Gene A

A G G T C T A C C G T T C A C

Ensembl: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Gene A: 4 - 14

UCSC: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Gene A: 3 - 14
```

- Ensembl/Gencode name sequences: 1, 2, 3 ... 22, X, Y, MT
- UCSC/NCBI name sequences: chr1, chr2, chr3 ... chr22, chrY, chrX, chrM
- Gene annotations differ significantly
- Gene IDs are different and do not map 1:1

# The era of big data



## Programming languages in Bioinformatics

- Bioinformatics creates huge quantities of data, and programming gives the means to analyse and interpret that data.
- The two most popular languages are Python and R
- Both are open source meaning they are freely available
- Both have large communities of users and developers
- Both have a wide range of bioinformatics resources and methods
- Both are cross-platform
- Others: Perl, Java, Ruby, Rust, Julia



- R is a language and environment for statistical computing and graphics
- R is available as Free Software under the terms of the Free Software Foundation's GNU General Public License
- RStudio provides a well developed integrated development environment (IDE) for R
- The Comprehensive R Archive Network (**CRAN**) repository features 19877 available general usage packages
- The Bioconductor project has 2230 bioinformatics specific packages



- Python is a general-purpose, open-source programming language used in various software domains, including data science, web development, and gaming
- Python is developed under an OSI-approved open source license, making it freely available
- · Various IDEs are available, e.g. Jupyter or Spyder
- 100,000s of packages available via the Python Package Index
- Virtual environments easily managed with Conda
- Python is more suitable for deep learning applications





# Excel tries to be helpful

Comment Open Access Published: 23 August 2016

# Gene name errors are widespread in the scientific literature

Mark Ziemann, Yotam Eren & Assam El-Osta 

✓

Genome Biology 17, Article number: 177 (2016) Cite this article

NEWS | 13 August 2021 | Correction 25 August 2021

# Autocorrect errors in Excel still creating genomics headache

Despite geneticists being warned about spreadsheet problems, 30% of published papers contain mangled gene names in supplementary data.

The Verge CIENCE / TECH / MICROSOFT

# Scientists rename human genes to stop Microsoft Excel from misreading them as dates



/ Sometimes it's easier to rewrite genetics than update Excel

By James Vincent, a senior reporter who has covered AI, robotics, and more for eight years at The Verge.

Aug 6, 2020, 1:44 PM GMT+1 | D 0 Comments / 0 New



If you buy something from a Verge link, Vox Media may earn a commission. See our ethics statement.

There are tens of thousands of genes in the human genome: minuscule twists of DNA and RNA that combine to express all of the traits and characteristics that make each of us unique. Each gene is given a name

MARCH1 → MARCHF1
SEPT1 → SEPTIN1

The era of big data



## The need for more power

- Massive data sets require a lot memory to store and process
- Complex algorithms such as alignment need powerful processors to run in a reasonable time frame
- Having a lot of processors available means that many jobs can be run in parallel
- High-Performance Cluster HPC (supercomputer)
- Cloud solution Google Cloud, Amazon Web Services (AWS), Microsoft Azure
- Graphics Processing Units required for Deep Learning

The era of big data



## Differing statistical approaches

- Single/Few measures in a simple experimental design t-test
- More complex studies Linear Model
  - Micro-arrays Simple Linear Model with Normal Distribution
  - RNAseq data Generalised Linear Model with Negative Binomial Distribution
- 10X Single Cell RNAseq needs additional solutions to overcome missing data

## Complex Data Requires New Solutions

- Sequence alignment algorithms
- Clustering algorithms
- Hidden Markov Models (HMMs)
- Phylogenetic tree construction algorithms
- Molecular modelling algorithms
- Variant/Mutation calling algorithms
- Deep learning, large language models and machine learning

## Overview

- A Brief Overview of Bioinformatics
- Bioinformatic Analysis of Next Generation Sequencing Data

## Data literacy

The ability to not only carry out statistical analysis on real-world problems, but also to understand and critique any conclusions drawn by others on the basis of statistics.

## What we do...



## The PPDAC cycle



## Consequences of Poor Experimental Design

## Inability to answer the questions we would like to answer

- Cost of experimentation.
- Limited & Precious material, esp. clinical samples.
- Immortalization of data sets in public databases and methods in the literature. Our bad science begets more bad science.
- Ethical concerns of experimentation: animals and clinical samples.

## A Well-Designed Experiment

#### **Should have:**

- Clear objectives
- Focus and simplicity
- Sufficient power
- Randomised comparisons

#### And be:

- Precise
- Unbiased
- Amenable to statistical analysis
- Reproducible

## Sources of Variation

dependent variable = f ( independent variable ) + noise

Biological Technical

## Biological "noise":

- Biological processes are inherently stochastic
- Single cells, cell populations, individuals, organs, species....
- Timepoints, cell cycle, synchronized vs. unsynchronized

### Technical noise:

- Reagents, antibodies, temperatures, pollution
- Platforms, runs, operators

Replication is required to capture variance Randomisation overcomes technical variation

## Randomisation





 We'll focus on Illumina short read sequencing as this is the most commonly used method at the moment

Library preparation





Library preparation



#### Sequencing by synthesis

- A complimentary strand is synthesized using the cDNA fragment as template.
- Each nucleotide includes a fluorescent tag and as the new strand is synthesized, the colour of the fluorescence indicates which base is being added.
- The sequencer records the order of these flashes of light and translates them to a base sequence.





Sequencing by synthesis



### Fastq file format

@LH00417:64:22MCGJLT3:3:1101:12206:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTTGACATTGTACTCGGCAGAAGATGTGCGGGCCAGGCTGCTCTGCCACTGGGCCTCAGGGATAGAGGTGCTGAGCCATCGAGCCGAGCGCGGCCGTGG @LH00417:64:22MCGJLT3:3:1101:12410:1064 1:N:0:GATCAAGGCA+ATTAACAAGG @LH00417:64:22MCGJLT3:3:1101:12798:1064 1:N:0:GATCAAGGCA+ATTAACAAGG TNTGACGATGTTAGCGGTTACTCTTCATTGCTTCTTTAGCTGCCAGGATCAGTGGCGTCAAGCTAGACAATGGTTTGGCCAGTTTCAGGAAAGGATGCTG @LH00417:64:22MCGJLT3:3:1101:13963:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTTCCTTTCAGCCAGTGCCTGCACAGATGAAGCTGACATCTGATCCTTCATGTCCCTGACAATTTGCCGAGTACTTGTGATGAAGGCTTTTCTTATGCT @LH00417:64:22MCGJLT3:3:1101:14000:1064 1:N:0:GATCAAGGCA+ATTAACAAGG GNAGCTTCTCTTTGATGGTCCGGTGTGGGTCGATCTCAATGGGATAATAGTGGTGAAAGAGCTCGGTGAGCTCTTTGCGACAATCCTCACTGATAATTTT @LH00417:64:22MCGJLT3:3:1101:14740:1064 1:N:0:GATCAAGGCA+ATTAACAAGG ANTCTTCTCACTGGTGCCAACAGAAAGTCTGTACTCGATGTCTGCCATTTTGGTCAATAAGTGTATCCGAACTGAAGATGGAAAGTCAACTCTGTGTACA @LH00417:64:22MCGJLT3:3:1101:15295:1064 1:N:0:GATCAAGGCA+ATTAACAAGG TNAGGTCTCTCACCTCCGGGGCCGTAGCGGACGCCTTAGCAGCGGCATTCTGGGACAATCCCCGGCCGCGGGGCACCAGCTTCCAATACCTAACTGTCTC @LH00417:64:22MCGJLT3:3:1101:16312:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTGGCCTGCACACTCAAAGAGCAGCTCTCCATCACCGAGCCTCCACACGAAGGCCTTGTCGTCTTCGCCCCCTGTCACTGCCAAGGTGTTTGGTTTTGGG @LH00417:64:22MCGJLT3:3:1101:16404:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNAACTATGAACTGAGCTCTGCCCATAGCTTCCAGAGAGCAGAGGAAATGGTTCTAAGCTAAACACCCACACTACGTGGTGGCAATGAGCCCGTTATCAA

#### Fastq file format - Headers

```
@LH00417:64:22MCGJLT3:3:1101:12206:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
CNTTGACATTGTACTCGGCAGAAGATGTGCGGGCCAGGCTGCTCTGCCACTGGGCCTCAGGGATAGAGGTGCTGA(
@LH00417:64:22MCGJLT3:3:1101:12410:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
@LH00417:64:22MCGJLT3:3:1101:12798:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
TNTGACGATGTTAGCGGTTACTCTTCATTGCTTCTTTAGCTGCCAGGATCAGTGGCGTCAAGCTAGACAATGGTT
@LH00417:64:22MCGJLT3:3:1101:13963:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
  TCCTTTCAGCCAGTGCCTGCACAGATGAAGCTGACATCTGATCCTTCATGTCCCTGACAATTTGCCGAGTACT
```

### Fastq file format - Sequence

```
@LH00417:64:22MCGJLT3:3:1101:12206:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
CNTTGACATTGTACTCGGCAGAAGATGTGCGGGCCAGGCTGCTCTGCCACTGGGCCTCAGGGATAGAGGTGCTGA
@LH00417:64:22MCGJLT3:3:1101:12410:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
  @LH00417:64:22MCGJLT3:3:1101:12798:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
  TGACGATGTTAGCGGTTACTCTTCATTGCTTCTTTAGCTGCCAGGATCAGTGGCGTCAAGCTAGACAATGGTT
@LH00417:64:22MCGJLT3:3:1101:13963:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
  TTCCTTTCAGCCAGTGCCTGCACAGATGAAGCTGACATCTGATCCTTCATGTCCCTGACAATTTGCCGAGTAC
```

### Fastq file format – Line 3

```
@LH00417:64:22MCGJLT3:3:1101:12206:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
CNTTGACATTGTACTCGGCAGAAGATGTGCGGGCCAGGCTGCTCTGCCACTGGGCCTCAGGGATAGAGGTGCTGA(
+
@LH00417:64:22MCGJLT3:3:1101:12410:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
+
@LH00417:64:22MCGJLT3:3:1101:12798:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
TNTGACGATGTTAGCGGTTACTCTTCATTGCTTCTTTAGCTGCCAGGATCAGTGGCGTCAAGCTAGACAATGGTT
+
@LH00417:64:22MCGJLT3:3:1101:13963:1064 1:N:0:GATCAAGGCA+ATTAACAAGG
CNTTCCTTTCAGCCAGTGCCTGCACAGATGAAGCTGACATCTGATCCTTCATGTCCCTGACAATTTGCCGAGTAC
+
```

#### Fastq file format - Headers

@LH00417:64:22MCGJLT3:3:1101:12206:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTTGACATTGTACTCGGCAGAAGATGTGCGGGCCAGGCTGCTCTGCCACTGGGCCTCAGGGATAGAGGTGCTGA( @LH00417:64:22MCGJLT3:3:1101:12410:1064 1:N:0:GATCAAGGCA+ATTAACAAGG @LH00417:64:22MCGJLT3:3:1101:12798:1064 1:N:0:GATCAAGGCA+ATTAACAAGG TNTGACGATGTTAGCGGTTACTCTTCATTGCTTCTTTAGCTGCCAGGATCAGTGGCGTCAAGCTAGACAATGGTT @LH00417:64:22MCGJLT3:3:1101:13963:1064 1:N:0:GATCAAGGCA+ATTAACAAGG CNTTCCTTTCAGCCAGTGCCTGCACAGATGAAGCTGACATCTGATCCTTCATGTCCCTGACAATTTGCCGAGTAC

## (Phred) Quality Scores

Sequence quality scores are transformed and translated p-values

Sequence bases are called after image processing (base calling):

- Each base in a sequence has a p-value associated with it
- p-values range from 0-1 (e.g.: 0.05, 0.01, 1e-30)
- p-value of 0.01 implies 1 in 100 chance that called base is wrong

## (Phred) Quality Scores ...

How do we assign p-values to bases in the fastq file?

- P-vales can be many characters long (e.g.:0.000005)
- Transform to Phred quality scores Q = -10 x log10(pvalue):

If 
$$p = 0.01 \rightarrow log10(0.01) = -2 \rightarrow Q = 20$$

- Translate Q values to ASCII characters (adding 33):
   Q value of 2 = #, Q value of 40 = I
- This gives us a single digit quality score code for each base that fits nicely in the fastq format

| Dec | Hex | Chr | Dec | Hex | Chr   | Dec | Hex | Chr |   | Dec | Hex | Chr |
|-----|-----|-----|-----|-----|-------|-----|-----|-----|---|-----|-----|-----|
| 0   | 00  | NUL | 32  | 20  | Space | 64  | 40  | @   | 1 | 96  | 60  | `   |
| 1   | 01  | SOH | 33  | 21  | !     | 65  | 41  | Α   | 1 | 97  | 61  | а   |
| 2   | 02  | STX | 34  | 22  | "     | 66  | 42  | В   | 1 | 98  | 62  | b   |
| 3   | 03  | ETX | 35  | 23  | #     | 67  | 43  | С   | 1 | 99  | 63  | С   |
| 4   | 04  | EOT | 36  | 24  | \$    | 68  | 44  | D   |   | 100 | 64  | d   |
| 5   | 05  | ENQ | 37  | 25  | %     | 69  | 45  | Ε   | 1 | 101 | 65  | е   |
| 6   | 06  | ACK | 38  | 26  | &     | 70  | 46  | F   |   | 102 | 66  | f   |
| 7   | 07  | BEL | 39  | 27  | -     | 71  | 47  | G   |   | 103 | 67  | g   |
| 8   | 08  | BS  | 40  | 28  | (     | 72  | 48  | Н   |   | 104 | 68  | h   |
| 9   | 09  | НТ  | 41  | 29  | )     | 73  | 49  | Ι   |   | 105 | 69  | i   |
| 10  | 0A  | LF  | 42  | 2A  | *     | 74  | 4A  | J   |   | 106 | 6A  | j   |
| 11  | 0B  | VT  | 43  | 2B  | +     | 75  | 4B  | K   |   | 107 | 6B  | k   |
| 12  | 0C  | FF  | 44  | 2C  | ,     | 76  | 4C  | L   |   | 108 | 6C  | - 1 |
| 13  | 0D  | CR  | 45  | 2D  | -     | 77  | 4D  | М   |   | 109 | 6D  | m   |
| 14  | 0E  | so  | 46  | 2E  |       | 78  | 4E  | N   |   | 110 | 6E  | n   |
| 15  | 0F  | SI  | 47  | 2F  | /     | 79  | 4F  | 0   |   | 111 | 6F  | 0   |
| 16  | 10  | DLE | 48  | 30  | 0     | 80  | 50  | Р   |   | 112 | 70  | р   |
| 17  | 11  | DC1 | 49  | 31  | 1     | 81  | 51  | Q   |   | 113 | 71  | q   |
| 18  | 12  | DC2 | 50  | 32  | 2     | 82  | 52  | R   |   | 114 | 72  | r   |
| 19  | 13  | DC3 | 51  | 33  | 3     | 83  | 53  | S   |   | 115 | 73  | s   |
| 20  | 14  | DC4 | 52  | 34  | 4     | 84  | 54  | Т   |   | 116 | 74  | t   |
| 21  | 15  | NAK | 53  | 35  | 5     | 85  | 55  | J   |   | 117 | 75  | u   |
| 22  | 16  | SYN | 54  | 36  | 6     | 86  | 56  | ٧   |   | 118 | 76  | ٧   |
| 23  | 17  | ETB | 55  | 37  | 7     | 87  | 57  | W   |   | 119 | 77  | W   |
| 2/  | 18  | CAN | 56  | રદ  | Я     | ጸጸ  | 58  | Y   |   | 120 | 78  | v   |

### QC is important

Check for any problems before we put time and effort into analysing potentially bad data

#### Start with FastQC:

- Quick
- Outputs an easy-to-read html report

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/



## Per base sequence quality





# Per base sequence content





# Per sequence GC content





### Read Alignment

AIM: Given a reference sequence and a set of short reads, align each read to the reference sequence finding the most likely origin of the read sequence.

Reference: ...GCTGATGTGCCGCCTCACTTCGGTGGTACGCT...

Reads:

GATGTGCCGCCTCACTTCGG
TGTGCCGGCTCACTTCGGTG
CTGATGTGCCGGCTCACTTC
GGCTCACTTCGGTGGTACGC
CCGCCTCACTTCGGTGGTAC
CCGCCTCACTTCGGTGGTAC

#### Read Alignment

- 1970 Needleman-Wunsch algorithm for sequence alignment published
- The Smith-Waterman algorithm was the first alignment algorithm to include the concept of gaps

  Initialize the scoring matrix
- Faster less computationally intensive alignment algorithms have been developed
- Aligners also use indexes of the genome to speed up alignment



Substitution 
$$S(a_i, b_j) = \begin{cases} +3, & a_i = b_j \\ -3, & a_i \neq b_j \end{cases}$$
  
matrix:  
Gap penalty:  $W_k = kW_1$ 

## **Short Read Aligners**

There are a lot of short read aligners, which use a variety of indexing algorithms and alignment algorithms.

The most popular are probably:

- The Burrows-Wheeler Aligner (BWA) https://github.com/lh3/bwa
- Bowtie2 https://github.com/BenLangmead/bowtie2
- STAR https://github.com/alexdobin/STAR
- HISAT2 http://daehwankimlab.github.io/hisat2/

#### Alignment

Ref AACTTGCCATGCAGCCGTTAGACAACTTAGTACTGACACCGAAG

Read TTGCCACGTAACCGTTACGCTAAGTACT

## Alignment



# mRNAseq Alignment



### **Short Read Aligners**

There are a lot of short read aligners, which use a variety of indexing algorithms and alignment algorithms.

The most popular are probably:

- The Burrows-Wheeler Aligner (BWA) DNA
- Bowtie2 DNA
- STAR Either
- HISAT2 Either

Sequence Alignment/Map (SAM) format is the standard format for files containing aligned reads.

#### Two main parts:

- Header meta data (source of the reads, reference genome, aligner, etc.)
- Alignment section:
  - 1 line for each alignment
  - contains details of alignment position, mapping, base quality etc.
  - 11 required fields, but other content may vary depending on aligner and other tools used to create the file

```
LH00417:64:22MCGJLT3:3:1101:24078:1064 163 X
                            20546017
                                   60 	1S5M1N89M236N5M =
                                                 20547099
     ATGTTGATGACAGCCGTCTTGAGGAGCTCAAAGCCACATTGCCCAGCCCAGACAAGTTACCCGGATTTAAGATGTACCCCATTGAT
1416
TTTGAGAAGGATGA
          TTTTTTTTTTTTTTTTTTTTTTT
               NH:i:1 HI:i:1 AS:i:200
                                nM:i:0
LH00417:64:22MCGJLT3:3:1101:24078:1064 83
                         X
                            20547099
                                     12M236N86M2S
                                                 20546017
-1416
     GATTTTGAGAAGGATGATGACAGCAATTTCCACATGGATTTCATTGTGGCTGCATCCAATCTTCGGGCCGAAAACTATGATATTTC
CCCTGCAGACCGNG
          NH:i:1 HI:i:1 AS:i:200
                                nM:i:0
TITITITITITITITITITITITI#9
                                     53D21M2D26M =
LH00417:64:22MCGJLT3:3:1101:25280:1064 163 1
                            34964132
                                               4964187 155 AAG
TG
   NH:i:1 HT:i:1 AS:i:175
                         nM:i:0
TOTTTT-TTTT
LH00417:64:22MCGJLT3:3:1101:25280:1064 83 1
                            34964187
                                     21M2D77M2S =
                                               4964132 -155
GTGTNG
     TTTTTTTTTTTIII#9
           NH:i:1 HT:i:1 AS:i:175
                           nM:i:0
```

```
20547099
1416
    ATGTTGATGACAGCCGTCTTGAGGAGCTCAAAGCCACATTGCCCAGCCCAGACAAGTTACCCGGATTTAAGATGTACCCCATTGAT
         NH:i:1 HI:i:1 AS:i:200
                            nM:i:0
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
LH00417:64:22MCGJLT3:3:1101:24078:1064 83 X
                        20547099
                                12M236N86M2S
                                           20546017
    GATTTTGAGAAGGATGATGACAGCAATTTCCACATGGATTTCATTGTGGCTGCATCCAATCTTCGGGCCGAAAACTATGATATTTC
CCCTGCAGACCGNG
         nM:i:0
TITITITITITITITITITITI#9
             NH:i:1 HI:i:1 AS:i:200
LH00417:64:22MCGJLT3:3:1101:25280:1064 163 1
                        34964132
                               60 \quad 53D21M2D26M =
                                        4964187 155 AAG
T9TTTT-TTTT
       NH:i:1 HI:i:1 AS:i:175
                      nM:i:0
LH00417:64:22MCGJLT3:3:1101:25280:1064 83 1 34964187
                               60 21M2D77M2S =
                                        4964132 -155
GTGTNG
     TTTTTTTTTTTT#9
         NH:i:1 HT:i:1 AS:i:175
                        nM:i:0
```

```
LH00417:64:22MCGJLT3:3:1101:24078:1064 163 X
                                     20546017 60
                                                 1S5M1N89M236N5M =
                                                                  20547099
1416
       ATGTTGATGACAGCCGTCTTGAGGAGCTCAAAGCCACATTGCCCAGCCCAGACAAGTTACCCGGATTTAAGATGTACCCCATTGAT
TTTGAGAAGGATGA
                     NH:i:1
                           HI:i:1 AS:i:200
LH00417:64:22MCGJLT3:3:1101:24078:1064
                                      20547099
                                                  12M236N86M2S
                                                                  20546017
-1416
       GATTTTGAGAAGGATGATGACAGCAATTTCCACATGGATTTCATTGTGGCTGCATCCAATCTTCGGGCCGAAAACTATGATATTTC
CCCTGCAGACCGNG
                     NH:i:1
                           HI:i:1 AS:i:200
                                           nM:i:0
LH00417:64:22MCGJLT3:3:1101:25280:1064
                               163 1
                                      34964132
                                                               4964187 155 AAG
                                                  53D21M2D26M =
AS:i:175
                                  nM:i:0
LH00417:64:22MCGJLT3:3:1101:25280:1064
                               83 1
                                      34964187
                                                               4964132 -155
                                                  21M2D77M2S =
                 GTGTNG
                           AS:i:175
TTTTTTTTTTTIII#9
               NH:i:1
                                     nM:i:0
```

```
LH00417:64:22MCGJLT3:3:1101:24078:1064 163 X
                                                 1S5M1N89M236N5M =
                                    20546017
                                                                20547099
 1416
      ATGTTGATGACAGCCGTCTTGAGGAGCTCAAAGCCACATTGCCCAGCCCAGACAAGTTACCCGGATTTAAGATGTACCCCATTGAT
TTTGAGAAGGATGA
              AS:i:200
                                          nM:i:0
LH00417:64:22MCGJLT3:3:1101:24078:1064
                                     20547099
                                                 12M236N86M2S
                                                                20546017
-1416
       GATTTTGAGAAGGATGATGACAGCAATTTCCACATGGATTTCATTGTGGCTGCATCCAATCTTCGGGCCGAAAACTATGATATTTC
CCCTGCAGACCGNG
                          HI:i:1 AS:i:200
                                          nM:i:0
LH00417:64:22MCGJLT3:3:1101:25280:1064
                                                 53D21M2D26M =
                                                             4964187 155 AAG
                              163 1
                                     34964132
                                                 TTTTTTAAGTGAGGGGTGTGTGTGTCTG
AACAGAAAATTGCCTACTTCAGGGGCCTAGATACTATTGCCATTGAGTACAGAGCCGAGATTTTT
    T9TTTT_TTTT
           NH:i:1
                 HI:i:1
                       AS:i:175
                                 nM:i:0
LH00417:64:22MCGJLT3:3:1101:25280:1064
                              83
                                                 21M2D77M2S
                                                             4964132 -155
                                     34964187
                 GTGTNG
              NH:i:1
                    HI:i:1
                          AS:i:175
                                    nM:i:0
```

```
163 X
                                                 20546017
LH00417:64:22MCGJLT3:3:1101:24078:1064
                                                                 1$5M1N89M236N5M =
                                                                                      20547099
1416
                                                 20547099
                                                                                      20546017
                                                        nM:i:0
                                                 34964132
                                                                 53D21M2D26M =
                                                                                  4964187 155 AAG
                                            nM:i:0
                               AS:i:175
                                                 34964187
                                                                 21M2D77M2S
                                                                                  4964132 -155
                                                nM:i:0
```

```
QNAME LH00417:64:22MCGJLT3:3:1101:24078:1064
FLAG 163
RNAME X
POS 20546017
MAPQ 60
CIGAR 1S5M1N89M236N5M
RNEXT =
PNEXT 20547099
TLEN 1416
SEQ ATGTTGATGACAGCCGTCTTGAGGAGCTC...
QUAL
     NH:i:1
     HI:i:1
     AS:i:200
     nM:i:0
```

#### AIM: To identify mutations in the genome

- Whole Genome Sequencing, Whole Exome Sequencing, Targeted Panels
- Sequence paired end with long reads (>=150 bp)
- Remove or mark duplicate reads
- Align to genome including viral decoy sequences, e.g. human cytomegalovirus (CMV), Epstein-Barr virus (EBV)
- Call Single Nucleotide Variants (SNV) and small Insertions/Deletions (Indels)
- Many somatic mutations may have very low variant allele frequency sequence to high depth – 100x coverage
- Differentiate germline variants by including both a tumour sample and a normal sample







#### Several factors complicate somatic SNV calling

- Low cellularity (tumour DNA content)
- Intra-tumour heterogeneity in which multiple tumour cell populations (subclones) exist
- Aneuploidy
- Unbalanced structural variation (deletions, duplications, etc.)
- Matched normal contaminated with cancer DNA
  - adjacent normal tissue may contain residual disease or early tumourinitiating somatic mutations
  - circulating tumour DNA in blood normals
- Sequencing errors
- Alignment artefacts

Mwenifumbo & Marra, Nat Rev Genet. 2013

There are a lot of tools for somatic variant calling.

Some of the most popular are:

- Mutect2 (GATK)
- Strelka
- FreeBayes
- VarDict
- VarScan2

They take different approaches, and it is not uncommon to use multiple tools to call variants and then take a consensus

#### Using Mutect2 from GATK



#### Variant Call Format (VCF) output

```
##fileformat=VCFv4.1
##FILTER=<ID=base quality, Description="Average base quality for variant alleles < 25">
##FILTER=<ID=germline risk,Description="Evidence suggests that the site may be germline, not somatic">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read depth at this position in the sample">
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=BQ, Number=., Type=Integer, Description="Average base quality for reads supporting alleles">
#CHROM POS
                                                            INFO FORMAT
                      ID REF
                                ALT QUAL FILTER
                                                                                 NORMAL
                                                                                                   TUMOUR
          142478336 . A
8
                                             germline risk, .
                                                                  GT:DP:AD:BQ
                                                                                 0/0:24:23,1:38,31 0/1:41:35,6:32,14
                                             base_quality
                                                                                                   0/1:52:44,8:36,40
8
          142486034 .
                                            PASS
                                                                  GT:DP:AD:BQ
                                                                                 0/0:43:43,0:36,0
```

#### Hypermutation Signatures in Glioblastoma



#### Single Cell RNAseq

RNA-Seq

#### **Average expression level**

- Comparative transcriptomics
- Disease biomarker
- Homogenous systems



#### Single Cell RNAseq

#### nature medicine

Letter | Published: 08 June 2020

A single-cell atlas of the peripheral immune response in patients with severe COVID-19

Aaron J. Wilk, Arjun Rustagi, Nancy Q. Zhao, Jonasel Roque, Giovanny J. Martínez-Colón, Julia L. McKechnie, Geoffrey T. Ivison, Thanmayi Ranganath, Rosemary Vergara,

LETTER

https://doi.org/10.1038/s41586-018-0394-6

A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte

Lindsey W. Plasschaert<sup>1,5,7</sup>, Rapolas Žilionis<sup>2,3,7</sup>, Rayman Choo-Wing<sup>1,5</sup>, Virginia Savowa<sup>2,6</sup>, Judith Knehr<sup>4</sup>, Guglielmo Roma<sup>4</sup>, Allon M. Klein<sup>2,6</sup> & Aron B. Jaffe<sup>1,5,6</sup>

#### □ nature

Article | Published: 20 February 2019

A single-cell molecular map of mouse gastrulation and early organogenesis

Blanca Pijuan-Sala, Jonathan A. Griffiths, Carolina Guibentif, Tom W. Hiscock, Wajid Jawaid, Fernando J. Calero-Nieto, Carla Mulas, Ximena Ibarra-Soria, Richard C. V.



### Single Cell RNAseq

Figure 1: Scaling of scRNA-seq experiments.



### scRNAseq analysis workflow



## **Trajectory Analysis**



### scRNAseq analysis workflow



#### Cluster Marker Genes



### scRNAseq analysis tools

- Alignment, Gene Expression Quantification, Cell Calling, QC:
  - CellRanger (10X), STARsolo, Alevin
- Data Exploration:
  - Loupe Browser (10X)
- Downstream Analysis:
  - R Bioconductor packages: scran, scater, bluster, MiloR, SingleR
    - See the OSCA book at https://bioconductor.org/books/release/OSCA/
  - R Seurat
    - See the Seurat documentation at https://satijalab.org/seurat/
  - Python Scanpy
    - See the Scanpy documentation at https://scanpy.readthedocs.io/en/stable/

#### What is Bioinformatics?

In the beginning of the 1970s, Ben Hesper and I started to use the term "bioinformatics" for the research we wanted to do, defining it as "the study of informatic processes in biotic systems".

Paulien Hogeweg, https://doi.org/10.1371/journal.pcbi.1002021

# THANK YOU

