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What is Bioinformatics? 

• Bioinformatics is a relatively new and evolving discipline that combines skills 
and technologies from computer science and biology to help us better 
understand and interpret biological data.

• Bioinformatics, as related to genetics and genomics, is a scientific subdiscipline 
that involves using computer technology to collect, store, analyze and 
disseminate biological data and information

• The mathematical, statistical and computing methods that aim to solve 
biological problems using DNA and amino acid sequences and related 
information.
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What is Bioinformatics? 

Bioinformatics is an interdisciplinary field of science that develops 
methods and software tools for understanding biological data, 
especially when the data sets are large and complex. 
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It all started with proteins

• 1951 – Frederick Sanger sequenced the amino acid structure of 
insulin
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It all started with proteins
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It all started with proteins …

• 1951 – Frederick Sanger sequenced the amino acid structure of 
insulin

• 1962 – Margaret Dayhoff and Robert Ledley publish COMPROTEIN
• 1965 – Margaret Dayhoff published the book “Atlas of Protein 

Sequence and Structure”
• 1970 – Needleman-Wunsch algorithm for sequence alignment 

published
• 1970s - Peter Chou and Gerald Fasman develop first protein 

structure prediction algorithm
• 1971 – The Protein Data Bank
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… and it continues with proteins
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A history of nucleotide sequencing
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The era of big data
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The era of big data

14



Data storage and Access

• Verification of results presented in papers requires access to the 
data used to generate them

• Data generated in one study can still be useful to other
• Open Data rather than siloed inaccessible data
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Findable    Accessible   Interoperable   Reusable



Data Repositories

16



A word on gene names
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Genomic Sequence Data
UCSC/NCBI versus Ensembl/Gencode/EBI
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• Ensembl uses a one-based coordinate system, whereas UCSC 
uses a zero-based coordinate system.

• Ensembl/Gencode name sequences : 1, 2, 3 … 22, X, Y, MT
• UCSC/NCBI name sequences: chr1, chr2, chr3 … chr22, chrY, chrX, chrM
• Gene annotations differ significantly
• Gene IDs are different and do not map 1:1

               

                     

                      

      

                      

                   



The era of big data
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Programming languages in Bioinformatics

• Bioinformatics creates huge quantities of data, and programming 
gives the means to analyse and interpret that data.

• The two most popular languages are Python and R
• Both are open source meaning they are freely available
• Both have large communities of users and developers
• Both have a wide range of bioinformatics resources and methods
• Both are cross-platform
• Others: Perl, Java, Ruby, Rust, Julia
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• R is a language and environment for statistical computing and 
graphics

• R is available as Free Software under the terms of the Free 
Software Foundation’s GNU General Public License

• RStudio provides a well developed integrated development 
environment (IDE) for R

• The Comprehensive R Archive Network (CRAN) repository features 
19877 available general usage packages

• The Bioconductor project has 2230 bioinformatics specific 
packages
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• Python is a general-purpose, open-source programming 
language used in various software domains, including data 
science, web development, and gaming

• Python is developed under an OSI-approved open source license, 
making it freely available

• Various IDEs are available, e.g. Jupyter or Spyder
• 100,000s of packages available via the Python Package Index
• Virtual environments easily managed with Conda
• Python is more suitable for deep learning applications



Excel tries to be helpful
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MARCH1 → MARCHF1
SEPT1      → SEPTIN1



The era of big data
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The need for more power

• Massive data sets require a lot memory to store and process
• Complex algorithms such as alignment need powerful processors 

to run in a reasonable time frame
• Having a lot of processors available means that many jobs can be 

run in parallel
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• High-Performance Cluster – HPC (supercomputer)
• Cloud solution – Google Cloud, Amazon Web Services (AWS), 

Microsoft Azure
• Graphics Processing Units required for Deep Learning



The era of big data
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Differing statistical approaches

• Single/Few measures in a simple experimental design – t-test
• More complex studies – Linear Model

• Micro-arrays – Simple Linear Model with Normal Distribution
• RNAseq data – Generalised Linear Model with Negative Binomial Distribution

• 10X Single Cell RNAseq – needs additional solutions to overcome 
missing data
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Complex Data Requires New Solutions

• Sequence alignment algorithms
• Clustering algorithms
• Hidden Markov Models (HMMs)
• Phylogenetic tree construction algorithms
• Molecular modelling algorithms
• Variant/Mutation calling algorithms
• Deep learning, large language models and machine learning
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Overview

• A Brief Overview of Bioinformatics
• Bioinformatic Analysis of Next Generation Sequencing Data
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Data literacy

The ability to not only carry out statistical analysis on real-world 
problems, but also to understand and critique any conclusions 
drawn by others on the basis of statistics. 
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What we do…
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The PPDAC cycle
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PROBLEM

PPDAC Cycle
CONCLUSION PLAN

ANALYSIS DATA

• What to measure and how? 
• Study design ? 

• Understanding and defining the problem. 
• How do we go about answering this question? 

• Collection
• Management

• Data Cleaning
• Statistical Analysis
• Construct table, graphs 
• Look for patterns

• Interpretation
• Conclusions
• Communication
• Hypothesis generation



Consequences of Poor Experimental Design

Inability to answer the questions we would like to answer

• Cost of experimentation. 
• Limited & Precious material, esp. clinical samples.
• Immortalization of data sets in public databases and methods in 

the literature. Our bad science begets more bad science.
• Ethical concerns of experimentation: animals and clinical samples.
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A Well-Designed Experiment

Should have:
• Clear objectives
• Focus and simplicity
• Sufficient power
• Randomised comparisons

And be:
• Precise
• Unbiased
• Amenable to statistical analysis
• Reproducible
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Sources of Variation

Biological “noise”:
• Biological processes are inherently stochastic
• Single cells, cell populations, individuals, organs, species….
• Timepoints, cell cycle, synchronized vs. unsynchronized
Technical noise:
• Reagents, antibodies, temperatures, pollution
• Platforms, runs, operators

Replication is required to capture variance
Randomisation overcomes technical variation35

dependent variable = f ( independent variable ) + noise 

Biological Technical



Randomisation
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https://www.goldenhelix.com/blog/stop-ignoring-experimental-design-or-my-head-will-explode/



Next Generation Sequencing

• We’ll focus on Illumina short read sequencing as this is the most 
commonly used method at the moment
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Next Generation Sequencing
Library preparation
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Next Generation Sequencing
Library preparation
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Next Generation Sequencing
Sequencing by synthesis

• A complimentary strand is synthesized using the cDNA fragment as template.
• Each nucleotide includes a fluorescent tag and as the new strand is 

synthesized, the colour of the fluorescence indicates which base is being added.
• The sequencer records the order of these flashes of light and translates them to 

a base sequence.
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Next Generation Sequencing
Sequencing by synthesis
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Fastq file format
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Fastq file format - Headers
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Fastq file format - Sequence
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Fastq file format – Line 3
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Fastq file format - Headers
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(Phred) Quality Scores

Sequence quality scores are transformed and translated p-values

Sequence bases are called after image processing (base calling):
• Each base in a sequence has a p-value associated with it
• p-values range from 0-1 (e.g.: 0.05, 0.01, 1e-30)
• p-value of 0.01 implies 1 in 100 chance that called base is wrong
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(Phred) Quality Scores …

How do we assign p-values to bases in the fastq file?

• P-vales can be many characters long 
(e.g.:0.000005)

• Transform to Phred quality scores - Q = −   x 

log10(pvalue) :
 If p = 0.01 → log10(0.01) = -2  → Q = 20
• Translate Q values to ASCII characters (adding 33):
  Q value of 2 = #, Q value of 40 = I
• This gives us a single digit quality score code for 

each base that fits nicely in the fastq format
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QC is important

Check for any problems before we put time and effort into analysing 
potentially bad data

Start with FastQC:
• Quick
• Outputs an easy-to-read html report
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https://www.bioinformatics.babraham.ac.uk/projects/fastqc/



Per base sequence quality
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Per base sequence content
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Per sequence GC content
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Read Alignment

AIM: Given a reference sequence and a set of short reads, align each 
read to the reference sequence finding the most likely origin of the 
read sequence.
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Read Alignment

• 1970 – Needleman-Wunsch algorithm for sequence alignment 
published

• The Smith-Waterman algorithm was the first alignment algorithm 
to include the concept of gaps
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• Faster less computationally intensive alignment 
algorithms have been developed

• Aligners also use indexes of the genome to 
speed up alignment



Short Read Aligners

There are a lot of short read aligners, which use a variety of indexing 
algorithms and alignment algorithms.

The most popular are probably:
• The Burrows-Wheeler Aligner (BWA) - https://github.com/lh3/bwa
• Bowtie2 - https://github.com/BenLangmead/bowtie2
• STAR - https://github.com/alexdobin/STAR
• HISAT2 - http://daehwankimlab.github.io/hisat2/
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Alignment
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Alignment
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mRNAseq Alignment
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Short Read Aligners

There are a lot of short read aligners, which use a variety of indexing 
algorithms and alignment algorithms.

The most popular are probably:
• The Burrows-Wheeler Aligner (BWA) - DNA
• Bowtie2 - DNA
• STAR - Either
• HISAT2 - Either
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SAM format
Sequence Alignment/Map (SAM) format is the standard format for files containing 
aligned reads.

Two main parts:

• Header - meta data (source of the reads, reference genome, aligner, etc.)
• Alignment section:

• 1 line for each alignment

• contains details of alignment position, mapping, base quality etc.

• 11 required fields, but other content may vary depending on aligner and other tools used to 
create the file
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SAM format 
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SAM format 
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SAM format 

64



SAM format 
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SAM format 
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SAM format
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DNAseq – Somatic Variant Calling

AIM: To identify mutations in the genome

• Whole Genome Sequencing, Whole Exome Sequencing, Targeted Panels
• Sequence paired end with long reads (>=150 bp)
• Remove or mark duplicate reads
• Align to genome including viral decoy sequences, e.g. human cytomegalovirus 

(CMV), Epstein-Barr virus (EBV)
• Call Single Nucleotide Variants (SNV) and small Insertions/Deletions (Indels)
• Many somatic mutations may have very low variant allele frequency - 

sequence to high depth – 100x coverage
• Differentiate germline variants by including both a tumour sample and a 

normal sample
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DNAseq – Somatic Variant Calling
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DNAseq – Somatic Variant Calling
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DNAseq – Somatic Variant Calling
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Several factors complicate somatic SNV calling

• Low cellularity (tumour DNA content)
• Intra-tumour heterogeneity in which multiple tumour cell 

populations (subclones) exist
• Aneuploidy
• Unbalanced structural variation (deletions, duplications, etc.)
• Matched normal contaminated with cancer DNA

• adjacent normal tissue may contain residual disease or early tumour-
initiating somatic mutations

• circulating tumour DNA in blood normals

• Sequencing errors
• Alignment artefacts
Mwenifumbo & Marra, Nat Rev Genet. 2013

72



DNAseq – Somatic Variant Calling

There are a lot of tools for somatic variant calling.

Some of the most popular are:
• Mutect2 (GATK)
• Strelka
• FreeBayes
• VarDict
• VarScan2

They take different approaches, and it is not uncommon to use 
multiple tools to call variants and then take a consensus
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Using Mutect2 from GATK
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References required:
• Genome Reference – same as used to align
• Germline Resource – e.g. Gnomad
• If not WGS then intervals list



Variant Call Format (VCF) output
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Hypermutation Signatures in Glioblastoma
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A graph of different colored bars

Description automatically generated

images/AnalysisReport.Combined.html


Single Cell RNAseq
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Separate populations
• Define heterogeneity
• Identify rare cell  populations
• Cell population dynamics

Average expression level
• Comparative transcriptomics
• Disease biomarker
• Homogenous systems



Single Cell RNAseq

78



Single Cell RNAseq

79 Source: Svensson et al. Nat Protoc 13, 599–604 (2018)



scRNAseq analysis workflow
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Trajectory Analysis
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scRNAseq analysis workflow
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Cluster Marker Genes
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scRNAseq analysis tools

• Alignment, Gene Expression Quantification, Cell Calling, QC:
• CellRanger (10X), STARsolo, Alevin

• Data Exploration:
• Loupe Browser (10X)

• Downstream Analysis:
• R – Bioconductor packages: scran, scater, bluster, MiloR, SingleR

• See the OSCA book at https://bioconductor.org/books/release/OSCA/

• R – Seurat
• See the Seurat documentation at https://satijalab.org/seurat/

• Python – Scanpy
• See the Scanpy documentation at https://scanpy.readthedocs.io/en/stable/
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What is Bioinformatics? 

In the beginning of the 1970s, Ben Hesper and I started to use the 
term “bioinformatics” for the research we wanted to do, defining it as 
“the study of informatic processes in biotic systems”. 
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Paulien Hogeweg, https://doi.org/10.1371/journal.pcbi.1002021



THANK YOU


	Slide 1: Introduction to Bioinformatics
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: What is Bioinformatics? 
	Slide 5: What is Bioinformatics? 
	Slide 6: What is Bioinformatics? 
	Slide 7: What is Bioinformatics? 
	Slide 8: It all started with proteins
	Slide 9: It all started with proteins
	Slide 10: It all started with proteins …
	Slide 11: … and it continues with proteins
	Slide 12: A history of nucleotide sequencing
	Slide 13: The era of big data
	Slide 14: The era of big data
	Slide 15: Data storage and Access
	Slide 16: Data Repositories
	Slide 17: A word on gene names
	Slide 18: Genomic Sequence Data UCSC/NCBI versus Ensembl/Gencode/EBI
	Slide 19: The era of big data
	Slide 20: Programming languages in Bioinformatics
	Slide 21
	Slide 22
	Slide 23: Excel tries to be helpful
	Slide 24: The era of big data
	Slide 25: The need for more power
	Slide 26: The era of big data
	Slide 27: Differing statistical approaches
	Slide 28: Complex Data Requires New Solutions
	Slide 29: Overview
	Slide 30: Data literacy
	Slide 31: What we do…
	Slide 32: The PPDAC cycle
	Slide 33: Consequences of Poor Experimental Design
	Slide 34: A Well-Designed Experiment
	Slide 35: Sources of Variation
	Slide 37: Randomisation
	Slide 38: Next Generation Sequencing
	Slide 39: Next Generation Sequencing Library preparation
	Slide 40: Next Generation Sequencing Library preparation
	Slide 41: Next Generation Sequencing Sequencing by synthesis
	Slide 42: Next Generation Sequencing Sequencing by synthesis
	Slide 43: Fastq file format
	Slide 44: Fastq file format - Headers
	Slide 45: Fastq file format - Sequence
	Slide 46: Fastq file format – Line 3
	Slide 47: Fastq file format - Headers
	Slide 48: (Phred) Quality Scores
	Slide 49: (Phred) Quality Scores …
	Slide 50: QC is important
	Slide 51: Per base sequence quality
	Slide 52: Per base sequence content
	Slide 53: Per sequence GC content
	Slide 54: Read Alignment
	Slide 55: Read Alignment
	Slide 56: Short Read Aligners
	Slide 57: Alignment
	Slide 58: Alignment
	Slide 59: mRNAseq Alignment
	Slide 60: Short Read Aligners
	Slide 61: SAM format
	Slide 62: SAM format 
	Slide 63: SAM format 
	Slide 64: SAM format 
	Slide 65: SAM format 
	Slide 66: SAM format 
	Slide 67: SAM format
	Slide 68: DNAseq – Somatic Variant Calling
	Slide 69: DNAseq – Somatic Variant Calling
	Slide 70: DNAseq – Somatic Variant Calling
	Slide 71: DNAseq – Somatic Variant Calling
	Slide 72: Several factors complicate somatic SNV calling
	Slide 73: DNAseq – Somatic Variant Calling
	Slide 74: Using Mutect2 from GATK
	Slide 75: Variant Call Format (VCF) output
	Slide 76: Hypermutation Signatures in Glioblastoma
	Slide 77: Single Cell RNAseq
	Slide 78: Single Cell RNAseq
	Slide 79: Single Cell RNAseq
	Slide 80: scRNAseq analysis workflow
	Slide 81: Trajectory Analysis
	Slide 82: scRNAseq analysis workflow
	Slide 83: Cluster Marker Genes
	Slide 84: scRNAseq analysis tools
	Slide 85: What is Bioinformatics? 
	Slide 86: Thank You

