one3levelfactor = data.frame(condition =
rep(c("TreatmentA", "TreatmentB", "Control"), 2))
# model without intercept and default levels:
model.matrix(~ condition - 1, data = one3levelfactor)
## conditionControl conditionTreatmentA conditionTreatmentB
## 1 0 1 0
## 2 0 0 1
## 3 1 0 0
## 4 0 1 0
## 5 0 0 1
## 6 1 0 0
## attr(,"assign")
## [1] 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$condition
## [1] "contr.treatment"
## (Intercept) conditionTreatmentA conditionTreatmentB
## 1 1 1 0
## 2 1 0 1
## 3 1 0 0
## 4 1 1 0
## 5 1 0 1
## 6 1 0 0
## attr(,"assign")
## [1] 0 1 1
## attr(,"contrasts")
## attr(,"contrasts")$condition
## [1] "contr.treatment"
## [1] "Control" "TreatmentA" "TreatmentB"
levels(one3levelfactor$condition) = c("TreatmentB", "TreatmentA", "Control")
model.matrix(~ condition, data = one3levelfactor)
## (Intercept) conditionTreatmentA conditionControl
## 1 1 1 0
## 2 1 0 1
## 3 1 0 0
## 4 1 1 0
## 5 1 0 1
## 6 1 0 0
## attr(,"assign")
## [1] 0 1 1
## attr(,"contrasts")
## attr(,"contrasts")$condition
## [1] "contr.treatment"
# create dataset
two2levelfactor = data.frame(treatment = rep(c("TreatA","NoTreat"),4), er = rep(c("+","-"),each=4))
# design matrix without interaction
model.matrix(~ treatment + er, data=two2levelfactor)
## (Intercept) treatmentTreatA er+
## 1 1 1 1
## 2 1 0 1
## 3 1 1 1
## 4 1 0 1
## 5 1 1 0
## 6 1 0 0
## 7 1 1 0
## 8 1 0 0
## attr(,"assign")
## [1] 0 1 2
## attr(,"contrasts")
## attr(,"contrasts")$treatment
## [1] "contr.treatment"
##
## attr(,"contrasts")$er
## [1] "contr.treatment"
# design matrix with interaction
model.matrix(~ treatment + er + treatment:er, data=two2levelfactor)
## (Intercept) treatmentTreatA er+ treatmentTreatA:er+
## 1 1 1 1 1
## 2 1 0 1 0
## 3 1 1 1 1
## 4 1 0 1 0
## 5 1 1 0 0
## 6 1 0 0 0
## 7 1 1 0 0
## 8 1 0 0 0
## attr(,"assign")
## [1] 0 1 2 3
## attr(,"contrasts")
## attr(,"contrasts")$treatment
## [1] "contr.treatment"
##
## attr(,"contrasts")$er
## [1] "contr.treatment"
## (Intercept) treatmentTreatA er+ treatmentTreatA:er+
## 1 1 1 1 1
## 2 1 0 1 0
## 3 1 1 1 1
## 4 1 0 1 0
## 5 1 1 0 0
## 6 1 0 0 0
## 7 1 1 0 0
## 8 1 0 0 0
## attr(,"assign")
## [1] 0 1 2 3
## attr(,"contrasts")
## attr(,"contrasts")$treatment
## [1] "contr.treatment"
##
## attr(,"contrasts")$er
## [1] "contr.treatment"
# create dataset
two2levelfactor = data.frame(treatment = rep(c("TreatA","NoTreat"),4), er = rep(c("+","-"),each=4))
# design matrix without interaction
model.matrix(~ treatment + er, data=two2levelfactor)
## (Intercept) treatmentTreatA er+
## 1 1 1 1
## 2 1 0 1
## 3 1 1 1
## 4 1 0 1
## 5 1 1 0
## 6 1 0 0
## 7 1 1 0
## 8 1 0 0
## attr(,"assign")
## [1] 0 1 2
## attr(,"contrasts")
## attr(,"contrasts")$treatment
## [1] "contr.treatment"
##
## attr(,"contrasts")$er
## [1] "contr.treatment"
# design matrix with interaction
model.matrix(~ treatment + er + treatment:er, data=two2levelfactor)
## (Intercept) treatmentTreatA er+ treatmentTreatA:er+
## 1 1 1 1 1
## 2 1 0 1 0
## 3 1 1 1 1
## 4 1 0 1 0
## 5 1 1 0 0
## 6 1 0 0 0
## 7 1 1 0 0
## 8 1 0 0 0
## attr(,"assign")
## [1] 0 1 2 3
## attr(,"contrasts")
## attr(,"contrasts")$treatment
## [1] "contr.treatment"
##
## attr(,"contrasts")$er
## [1] "contr.treatment"
## (Intercept) treatmentTreatA er+ treatmentTreatA:er+
## 1 1 1 1 1
## 2 1 0 1 0
## 3 1 1 1 1
## 4 1 0 1 0
## 5 1 1 0 0
## 6 1 0 0 0
## 7 1 1 0 0
## 8 1 0 0 0
## attr(,"assign")
## [1] 0 1 2 3
## attr(,"contrasts")
## attr(,"contrasts")$treatment
## [1] "contr.treatment"
##
## attr(,"contrasts")$er
## [1] "contr.treatment"
Let’s generate
set.seed(777)
cnts <- matrix(rnbinom(n=20000, mu=100, size=1/.25), ncol=20)
cond <- factor(rep(1:2, each=10))
Let’s
library(DESeq2)
dds <- DESeqDataSetFromMatrix(cnts, DataFrame(cond), ~ cond)
dds <- DESeq(dds)
results(dds)
## log2 fold change (MLE): cond 2 vs 1
## Wald test p-value: cond 2 vs 1
## DataFrame with 1000 rows and 6 columns
## baseMean log2FoldChange lfcSE
## <numeric> <numeric> <numeric>
## 1 97.3140070275624 -0.682067456083922 0.34452548280397
## 2 109.986001522326 -0.228819342511955 0.450719570130495
## 3 98.8111339049887 0.104290983234424 0.462113448191991
## 4 103.261468650616 0.306399638856188 0.297682184947304
## 5 97.9405986819028 0.316338122846712 0.357241885530114
## ... ... ... ...
## 996 86.805727240247 0.04677025495103 0.287042149795611
## 997 101.443692661503 -0.207080563623306 0.339886451284232
## 998 78.1356102563776 -0.637278950950912 0.36951488929412
## 999 89.2919596938848 0.755472532550507 0.306192302512061
## 1000 103.556924422375 -0.0728875235997886 0.348655022016602
## stat pvalue padj
## <numeric> <numeric> <numeric>
## 1 -1.97973006389199 0.0477338685071651 0.745841695424454
## 2 -0.507675631758581 0.611680840528566 0.944353784116972
## 3 0.225682640577678 0.821448260598229 0.97838220015929
## 4 1.02928443269263 0.303346036357983 0.944353784116972
## 5 0.885501212651186 0.375886365866081 0.944353784116972
## ... ... ... ...
## 996 0.162938631083738 0.870566754045311 0.980044486284683
## 997 -0.609263955185239 0.542349494692315 0.944353784116972
## 998 -1.72463673160315 0.084592959500015 0.824309867118894
## 999 2.46731392772602 0.013613095213581 0.614613332611614
## 1000 -0.209053416693129 0.834406539253083 0.97838220015929
Let’s print the relevant information to deduce the estimated NB distribution assumed for each gene and condition:
## DataFrame with 1000 rows and 5 columns
## Intercept cond_2_vs_1 dispGeneEst
## <numeric> <numeric> <numeric>
## 1 6.90565301909102 -0.682067456083922 0.294082154716229
## 2 6.89102316136555 -0.228819342511955 0.479230606512793
## 3 6.57355070389213 0.104290983234424 0.503276086973451
## 4 6.52875472002919 0.306399638856188 0.189798622917205
## 5 6.44716073806192 0.316338122846712 0.327392889229233
## ... ... ... ...
## 996 6.41604810736421 0.04677025495103 0.167776129518199
## 997 6.76441531168783 -0.207080563623306 0.2825326850941
## 998 6.57183941992272 -0.637278950950912 0.363912466734467
## 999 6.05379830726471 0.755472532550507 0.20664384771742
## 1000 6.73029484971501 -0.0728875235997886 0.304930318666185
## dispFit dispersion
## <numeric> <numeric>
## 1 0.234623522081347 0.274708262519391
## 2 0.230524862455347 0.479230606512793
## 3 0.235958890942538 0.503276086973451
## 4 0.235749211622816 0.203479032667289
## 5 0.235236483769548 0.296668289860503
## ... ... ...
## 996 0.230672517849539 0.186869944860045
## 997 0.23678896943264 0.268003091126513
## 998 0.22268683529524 0.315104699589792
## 999 0.229561562524407 0.213730041838963
## 1000 0.235483221659877 0.282744569338977
Let’s reproduce the plot showing the fitted probability mass functions per condition for gene 1:
axe.x = seq(0,400)
f.x1 = dnbinom(axe.x, mu=2^6.90565, size=1/0.274708)
f.x2 = dnbinom(axe.x, mu=2^(6.90565-0.682067), size=1/0.274708)
par(mfrow=c(1,1),mar=c(4,4,0,0))
ylimw = max(c(f.x1,f.x2))
plot(1,1,ylim=c(0,ylimw),xlim=c(0,max(axe.x)),pch="",xlab="Counts",ylab="Probability",
axes=FALSE)
lines(axe.x,f.x1,col=.cruk$col[1])
lines(axe.x,f.x2,col=.cruk$col[3])
axis(1,pos=0)
axis(2,las=2,pos=0)
legend("topright",bg="light gray",lty=1,col=.cruk$col[c(1,3)],
legend=c("Condition 1","Condition 2"),title="Estimated distributions",box.lwd=NA)
abline(v=2^6.90565,col=.cruk$col[1],lty=3)
abline(v=2^(6.90565-0.682067),col=.cruk$col[3],lty=3)
When we are doing thousands of tests for differential expression, the overall significance level of a test is very difficult to control. Let’s see why: First, we simulate 40,000 genes not differentially expressed (with a mean of zero). We assume that we have 10 replicates of this experiment:
Now we assume that we run a t-test under the null hypothesis that the mean is zero for each of these genes, that is each row in the matrix:
## [1] 0.5723298
Because we have generated this data with mean zero, we know that none of these genes are differentially expressed, so we would like to be able to not reject any of the hypothesis. However, if you choose a significance level of 0.05 we get
## [1] 1967
Too many rejections!!! In fact, if we look at the distributions of the p-values obtained we get:
That is, if the null hypothesis is true, the p-values will follow a uniform distribution. This is the key to all methods that aim to control the proportion of false positives amongs the genes that we call differentially expressed. Let’s add 1000 genes to our set that are really differentially expressed (mean of 1):
df <- 1000
Y <- matrix(rnorm(df* R, 1, 1), nrow=df)
Z <- rbind(X, Y)
pvals <- apply(Z, 1, function(y) t.test(y)$p.value)
#
plot(pvals,col=rep(1:2,c(40000,1000)))
## 1 2
## 0.000 0.002
Let’s look at the distribution of p-values now:
What would be the number of false positives now? How many would we expect if we reject p-values samller than our significance level, 0.05?
## [1] 0.7337151
We can compare this with the Benjamini-Hochberg method: