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The many faces of RNA-seq – Techniques!

•  mRNA-seq!
•  Exome capture!
•  Targeted!
•  Small RNA!
•  Total RNA!
•  Ribosome profiling !
•  Single Cell RNA-Seq!

piRNA	

miRNA	

sncRNA	



	
	

The many faces of RNA-seq – Applications!

Discovery!
•  Transcripts!
•  Isoforms!
•  Splice junctions!
•  Fusion genes!
Differential expression!
•  Gene level expression changes!
•  Relative isoform abundance!
•  Splicing patterns!
Variant calling!



	
	

Microarray à RNA-seq!

Guo et al. (2013) Plos One Wang et al (2014) Nature Biotech.



	
	

Library Preparation & Sequencing!

modified from Malone JH, Oliver B (2011) BMC Biol.

QC - RIN number!

	Sigurgeirsson, Emanuelsson & 
Lundeberg (2014) PLOS ONE
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Sources of Noise!

Biological Technical 

Sampling Process 



	
	

Sources of Noise – Sampling Bias!

Sample	A	 Sample	B	

Subsampling a from a pool of RNAs!



	
	

Sources of Noise – Sampling Bias!

Transcript A! Transcript B 

Transcript length affects the number of RNA fragments 
present in the library from that gene!



	
	

Sources of Noise - Process!



	
	

Sources of Noise – Process!

PCR!

Duplicates!

Optical!

Sequencing Errors!

Index Swapping!



	
	

Raw Sequence – FASTQ files!

Flowcell!
Barcode | Lane!

Machine ID!

Tile  |     X     |    Y!

Index 
Sequences!

Sequence ID!
Sequence!

+!
Base Quality 

Scores!



	
	

Raw Sequence QC - FASTQC!

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/



	
	

Raw Sequence QC - FASTQC!

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/



	
	

Trimming!

•  Quality-based Trimming!
•  Adapter contamination!

50	bases	

Insert	



	
	

Adapter contamination - FASTQC!



	
	

Sequence to Sense!

primarily accumulate at the 3’ end of transcripts in
poly(A)-selected samples, this might indicate low RNA
quality in the starting material. The GC content of
mapped reads may reveal PCR biases. Tools for quality
control in mapping include Picard [16], RSeQC [17] and
Qualimap [18].

Quantification
Once actual transcript quantification values have been
calculated, they should be checked for GC content and
gene length biases so that correcting normalization
methods can be applied if necessary. If the reference
transcriptome is well annotated, researchers could
analyze the biotype composition of the sample, which is
indicative of the quality of the RNA purification step.
For example, rRNA and small RNAs should not be
present in regular polyA longRNA preparations [10, 19].
A number of R packages (such as NOISeq [19] or EDA-
Seq [20]) provide useful plots for quality control of
count data.

Reproducibility
The quality-control steps described above involve indi-
vidual samples. In addition, it is also crucial to assess the
global quality of the RNA-seq dataset by checking on
the reproducibility among replicates and for possible
batch effects. Reproducibility among technical replicates
should be generally high (Spearman R2 > 0.9) [1], but no

clear standard exists for biological replicates, as this de-
pends on the heterogeneity of the experimental system.
If gene expression differences exist among experimental
conditions, it should be expected that biological repli-
cates of the same condition will cluster together in a
principal component analysis (PCA).

Transcript identification
When a reference genome is available, RNA-seq analysis
will normally involve the mapping of the reads onto the
reference genome or transcriptome to infer which tran-
scripts are expressed. Mapping solely to the reference
transcriptome of a known species precludes the discov-
ery of new, unannotated transcripts and focuses the ana-
lysis on quantification alone. By contrast, if the organism
does not have a sequenced genome, then the analysis
path is first to assemble reads into longer contigs and
then to treat these contigs as the expressed transcrip-
tome to which reads are mapped back again for quantifi-
cation. In either case, read coverage can be used to
quantify transcript expression level (Fig. 1b). A basic
choice is whether transcript identification and quantifi-
cation are done sequentially or simultaneously.

Alignment
Two alternatives are possible when a reference sequence
is available: mapping to the genome or mapping to the
annotated transcriptome (Fig. 2a, b; Box 3). Regardless

Fig. 2 Read mapping and transcript identification strategies. Three basic strategies for regular RNA-seq analysis. a An annotated genome is
available and reads are mapped to the genome with a gapped mapper. Next (novel) transcript discovery and quantification can proceed with or
without an annotation file. Novel transcripts are then functionally annotated. b If no novel transcript discovery is needed, reads can be mapped
to the reference transcriptome using an ungapped aligner. Transcript identification and quantification can occur simultaneously. c When no
genome is available, reads need to be assembled first into contigs or transcripts. For quantification, reads are mapped back to the novel reference
transcriptome and further analysis proceeds as in (b) followed by the functional annotation of the novel transcripts as in (a). Representative
software that can be used at each analysis step are indicated in bold text. Abbreviations: GFF General Feature Format, GTF gene transfer format,
RSEM RNA-Seq by Expectation Maximization

Conesa et al. Genome Biology  (2016) 17:13 Page 5 of 19

Conesa et al. (2016) Genome Biology



	
	

De Novo assembly!

Haas, B.J.. et al (2013) Nature Protocols

e.g. TRINITY



	
	

Analysis Overview!

Mapping!

Summarisation!

Normalisation!

DE analysis!

Functional analysis!



	
	

Reference-based assembly!

Genome mapping 
•  Can identify novel features 
•  Splice aware? 
•  Can be difficult to reconstruct 

isoform and gene structures 
	

 
Transcriptome mapping 
•  No repetitive reference 
•  Novel features? 
•  How reliable is the 

transcriptome? 

	
Trapnell & Salzberg (2009) Nature Biotech 



	
	

A smart suit(e) for RNA-seq analysis!

Trapnell, C. et al (2012) Nature Protocols 



	
	

Spliced Alignment!



	
	

Spliced Alignment with Tophat/Bowtie!

Kim, D. et al (2012) Genome Biology 



	
	

Visualising Mapping Results – IGV!



	
	

Summarisation/Counting!

Oshlack, A. et al. (2010) Genome Biology 

Genome-based features!
•  Exon or gene boundaries?!
•  Isoform structures!
•  Gene multireads!

Transcript-based features!
•  Transcript assembly !
•  Novel structures!
•  Isoform multireads!



	
	

Summarisation/Counting!

e.g. Htseq or 
Subread



	
	

Summarisation/Counting!

Mortazavi, A. et al (2008) Nature Methods 



	
	

Counting!



	
	

Normalisation!

•  Counting 

  à estimate of relative counts for each gene 

Does this accurately represent the original population? 

Library size 
Sequencing depth varies 

between samples 
	

Gene Properties 
GC content, length, sequence 

	

Library composition 
Highly expressed genes 

overrepresented at cost of 

lowly expressed genes 
	



	
	

Normalisation - Scaling!

Total Count!
•  Normalise each sample by total number of reads sequenced. !
•  Can also use another statistic similar to total count; eg. median, upper quartile!

Scaling	



	
	

Normalisation - RPKM!

Oshlack, A. & Wakefield, M.J. (2009) Biology Direct 

RPKM 
•  Reads per kilobase per million = 

reads for gene A 

length of gene A X Total number of reads  



	
	

Normalisation – Geometric Scaling!

Geometric scaling factor 
•  Assumes that most genes are not differentially expressed 

GM of Gene 1 

GM of Gene 2 

GM of Gene 3 

GM of Gene N 

. 

. 

. 
 

RC of Gene 2 

RC of Gene 2 

RC of Gene 3 

RC of Gene N 

. 

. 

. 
 

Median 

RC = read counts (per sample) 
GM =geometric mean (all samples) 



	
	

Normalisation – Trimmed Mean of M!

Robinson, M.D. & Oshlack, A. (2010) Genome Biology 

Trimmed mean of M 
•  Implemented in edgeR

•  Assumes most genes are not differentially expressed 



	
	

Differential Expression!

•  Comparing feature abundance under different 

conditions 

•  Assumes linearity of signal 

•  When feature=gene, well-established pre- and post-

analysis strategies exist  

Mortazavi, A. et al (2008) Nature Methods 
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Differential Expression!

•  Simple difference in means!
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•  Replication introduces variance !



	
	

Differential Expression - Modelling!

Normal distribution à t-test!



	
	

Differential Expression- Modelling!

•  Use the Poisson distribution for count data!
•  Just one parameter required – the mean !



	
	

Differential Expression- Modelling!

•  Biology is never that simple!
•  The negative binomial 

distribution represents an 
overdispersed Poisson 
distribution !

•  It has two parameters:!

mean and (over)dispersion!

Anders, S. & Huber, W. (2010) Genome Biology 



	
	

Differential Expression- Modelling!

•  Estimating the dispersion parameter can be difficult with a small number of 
samples!

•  edgeR: models the variance as the sum of technical and biological variance!
•  ‘Share’ information from all genes to obtain global estimate - shrinkage!

Simon Anders 



	
	Modelling – in fashion 

!
•  DESeq uses a similar formulation of the variance term!



	
	

Replicates v Sequencing Depth!

Liu et al. (2014) Bioinformatics 



	
	

Replicates v Sequencing Depth!

HIGH	 MEDIUM	 LOW	

Liu et al. (2014) Bioinformatics 



	
	

Replicates v Sequencing Depth!

Liu et al. (2014) Bioinformatics 



	
	

Towards Biological Meaning!

•  Clustering 

Hamy et al. (2016) PLOS One 



	
	

Towards Biological Meaning!

•  Gene Set Enrichment Analysis 



	
	

Towards Biological Meaning!

•  Network analysis 

Hamy et al. (2016) PLOS One 


