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Timeline

Data types and descriptive statistics

Central limit theorem (CLT)

Online quiz

Simulations

o Morning (9.30-12.30)

o Afternoon (13.30-17.00)

o Lunch

Inferential statistics: one-sample tests

Inferential statistics: two-sample tests

Exercises

Exercises

Inferential statistics: estimation Simulations

Basic concepts of Statistics Exercises

Inferential statistics: basic concepts Exercises

Group based exercises and discussion



Basic 

concepts of 

Statistics

09.30 - 09.45

pvalue

point estimation

hypothesis testing

likelihood

probability

sample

statistic

confidence interval

outlier



Random experiment

Tossing a coin 100 times

Toss number 1 2 3 … … … … … 99 100

Result H T T … … … … … H T
Data

Model generating data
H = p
T = 1 - p

Parameter



Components of a statistical model

systematic and 
random (unpredictable) 
components of a statistical 
model



Basic statistical concepts



Parametric, nonparametric and robust statistics

EHampel FR, Ronchetti E, Rousseeuw PJ, Stahel WA. 
Robust Statistics: The Approach Based on Influence Functions. New York: Wiley; 1986.

allows all possible statistical 
models and reduces the 

ignorance about them only 
by one or a few dimensions

allows only a very thin subset 
of all statistical models, but 
information is completely 

captured by few parameters

allows a full (namely fu!l-
dimensional) neighborhood 
of a parametric model, thus 
being more realistic and yet, 

providing the same 
advantages as a strict 

parametric model



http://bioinformatics-core-shared-training.github.io/IntroductionToStats

Exercises

Exercises



Descriptive 

Statistics

10.15 - 10.35

Data types and descriptive statistics



Data analysis: descriptive statistics

Here, the data are analyzed on their own terms, essentially 
without extraneous assumptions. 
The principal aim is the organization and summarization of the 
data in ways that bring out their main features and clarify their 
underlying structure.

E.L. Lehmann, George Casella, Theory of Point Estimation, Second Edition



Descriptive statistics in preclinical research

• Baseline data 
     (e.g. strain, sex, age, weight, housing)

• Experimental design 
      (e.g. sample size, blocking, treatment)

• Outcomes (e.g. distribution, number of events,

        length of follow-up, number of events, 
        causes of right-censoring)

† Kilkenny C, Parsons N, Kadyszewski E, Festing MFW, Cuthill IC, et al. (2009) Survey of the Quality of Experimental Design, 
Statistical Analysis and Reporting of Research Using Animals. PLoS ONE 4(11): e7824. doi:10.1371/journal.pone.0007824 



Data types

C
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l
e
x
i
t
y

Qualitative

Quantitative

Binary/dichotomous

Nominal

Ordinal

Ratio scale (meaningful zero point)

Interval scale (arbitrary zero point)



Data types

C
o
m
p
l
e
x
i
t
y

Qualitative

Quantitative

Binary/dichotomous

Nominal

Ordinal

Continuous

Discrete
Number of 
metastases



Descriptive statistics, univariate analysis
Nominal data

Histotype N %

Serous 48 41.7

Undifferentiated 22 19.1

Endometrioid 21 18.3

Mucinous 16 13.9

Clear cell 8 7.0

Serous is the mode.
The mode is the category that appears 
most often in a set of data values.

Pie chart



Descriptive statistics, univariate analysis
Ordinal data

Grading N %

G1 48 45.7

G2 18 17.1

G3 23 21.9

G4 16 15.2

G1 is the mode.

G2 is the median.
The median is the category separating the 
higher half from the lower half of a data 
sample.



Descriptive statistics, univariate analysis
Discrete data

N. of metastases N %

0 20 16.3

1 45 36.6

2 30 24.4

3 12 9.8

4 10 8.1

5 5 4.1

6 1 0.8

1 metastasis is the mode.

1 metastatis is the median.

1.7 is the mean number of metastases.



Descriptive statistics, univariate analysis
Continuous data

Weight (kg) N (%) N/10kg

0 -| 50 10 (5.7) 2

50 -| 60 10 (5.7) 10

60 -| 70 23 (13.1) 23

70 -| 80 45 (25.7) 45

80 -| 90 40 (22.9) 40

90 -| 130 47 (26.9) 11.8

70 -| 80 is the modal interval.

70 -| 80 is the median interval.

81.4 kg is the mean weight of patients.



Descriptive statistics, univariate analysis

Quantitative dataProperties of the mean

o ⅀i (ai - 𝞵) = 0

o ⅀i (ai - 𝞵)2 < ⅀i (ai - x)2, x ≠ 𝞵   

o Linearity

o Associative property



Descriptive statistics, univariate analysis

Quantitative dataMeasures of variability

o (⅀i |ai - M|)/n, where M is a measure of central tendency

o √[(⅀i |ai - M|2)/n], if M = 𝞵, it is called standard deviation (𝛔)

o Interquartile range (IQR)    

Qualitative dataMeasures of heterogeneity

Shannon diversity index



Descriptive statistics, bivariate analysis

ID mouse Day 21, mm 3 Day 23, mm 3

M101 260 270

M102 234 240

M103 400 470

M104 345 350

M105 450 460

M106 200 250

M107 500 510



Descriptive statistics, bivariate analysis

Take home message:
Paired data are not independent. They correlate.



http://bioinformatics-core-shared-training.github.io/IntroductionToStats

Online quiz

Exercises



Inferential 

Statistics

11.10 - 11.20

Basic concepts

1) Statistical distribution 

3) Frequentist inference

2) Data 
generation



Random events.

Empirical phenomena which have the following two features:

1. They do not have deterministic regularity (i.e. observations
 of them do not always yield the same outcome)

2. They possess some statistical regularity, indicated by the 
statistical stability of their frequencies.

Shiryaev Albert N., Probability-1, Third Edition

Data analysis: frequentist inference



Mathematical analysis of random events.

▪ Random events are more or less adequately described by 
statistical distributions (e.g. normal distribution).

▪ Statistical regularity is captured by parameters of statistical 
distributions (e.g. mean and standard deviation of the 
normal distribution).

Data analysis: frequentist inference



Probability distribution

Def: In probability theory and statistics, a probability distribution is the 

mathematical function that gives the probabilities of occurrence of different 

possible outcomes for an experiment.

Outcome

Probi

Probj

Probk Probi could be interpreted as parameters 
of a general statistical distribution

https://en.Wikipedia.org/wiki/Probability_distribution, 15th August 2024 



Binomial distribution
Def: the binomial distribution with parameters n and p is the discrete statistical 

distribution of the number of successes in a sequence of n independent trials. Each trial 

(Bernoulli trial) has a binary outcome: success with probability p and failure with 

probability 1-p.

Assumptions of the binomial distribution

- The outcome of each trial is binary (0/1)

- Each Bernoulli trial is independent (i.e. the outcome of each trial does not depend on 

the outcome of the other trials)

- The probability of success p is constant (i.e. it does not change for each trial)

n = 20
p = 0.40



Poisson distribution
Def: the Poisson distribution with parameter 𝞴 is the discrete probability 

distribution of the number of events that occur randomly and uniformly in a fixed time 

interval or in a given area.

Assumptions of the Poisson distribution

o The outcome is a count [0,1,…,k,…]

o Independence of events: the occurrence of one event 

does not affect the probability that another event will 

occur

𝞴 = 4

o Two events cannot occur at exactly the same instant in time or at the same point of  

     the given area

o Events occur at a uniform rate over the entire time period or area. 𝞴 is the expected 

(mean) number of events per time/area unit



Normal distribution

Def: a normal distribution or Gaussian distribution is a type of continuous 

probability distribution. It is determined by two parameters (𝛍, 𝛔).

1) the parameter 𝛍 is the mean or expectation 

of the distribution (and also its median and 

mode)

2) the parameter 𝛔 is its standard deviation

Aidan Lyon, Why are Normal Distributions Normal?, The British Journal for the Philosophy of Science 2014 65:3, 621-649



Gamma distributionBeta distributionHypergeometric distribution

Weibull 
distribution

Other statistical distributions

Log-normal distribution



Here, it is assumed that data are generated by a statistical 
distribution with parameters 𝛈,𝛉,…,𝛙. 
The principal aim is to infer information about 𝛈,𝛉,…,𝛙.

E.L. Lehmann, George Casella, Theory of Point Estimation, Second Edition

Data analysis: frequentist inference

1) Statistical distribution 

2) Data generation

3) Frequentist inference



…to be clear about frequentist inference

Population Sample

Distribution described by 
parameters (e.g., μ, σ, π)

Data (x1, x2,…, xn)

Inferential statistics (e.g., 
sample mean, std, p)

Statistical target



D.J. Spiegehalter et al., Bayesian Approaches to Randomized Trials, J.R. Statist. Soc. A (1994) 157, Part 3, pp. 357-416

Data analysis: bayesian inference

Initial beliefs concerning a parameter 𝜭 of 
interest are expressed as a prior distribution

Evidence from further data is summarized by 
a likelihood function for the parameter 𝜭

Using Bayes theorem (i.e. normalized product 
of the prior and the likelihood) initial beliefs 
are updated to form the posterior 
distribution, on the basis of which 
conclusions on the parameter 𝜭 should be 
drawn

The basic paradigm of bayesian statistics



A practical example of bayesian inference

Berry DA. Bayesian clinical trials. Nat Rev Drug Discov. 2006 Jan;5(1):27-36. doi: 10.1038/nrd1927. PMID: 16485344



Edwards A.W.F., Likelihood (Expanded Edition), 1992

Data analysis: bayesian inference

The recourse to the prior distribution on the parameters of a 
model is questionable. There is in fact a major step from the 
notion of an unknown parameter to the notion of a random 
parameter.



Inferential 

Statistics

11.20 - 11.45

CLT and 95% CIs

1) Statistical distribution 

3) Frequentist inference

2) Data 
generation



Central limit theorem (CLT)

Let X1,…,Xn be independent and identically distributed 
random variables with mean 𝛍 and standard deviation 𝛔 

The sample mean ẋ is a statistic obtained by calculating the 
arithmetic average of the values of X1,…,Xn in a sample

CLT: ẋ is distributed as N (𝛍, 𝛔/√(n)) as the sample size n 
gets larger



Central limit 
theorem

The usefulness of the CLT is that the distribution of sample means approaches normality 
regardless of the distribution of the population

Central limit theorem (CLT)



Confidence intervals
In frequentist inference, a confidence interval (CI) is a range of estimates for an 
unknown parameter Θ.

https://en.wikipedia.org/wiki/Confidence_interval, 15th August 2024

It is computed at a designated confidence level 
(e.g., 95% CI). The confidence level represents the 
long-run proportion of CIs that theoretically 
contain the true value of the parameter Θ. 

For example, out of all intervals computed at the 
95% level, 95% of them should contain the 
parameter’s true value.



95% CI = ẋ + z0.975 ∙ 𝛔/√(n), where z0.975 ≃ 1.96

Normal data, 𝛔 known: one sample z-confidence interval

Sample mean ẋ is exactly distributed according to N (𝛍, 𝛔/√(n))

If you do not know 𝛔…

Confidence intervals for the normal distribution



Let x1,…,xn be independent and identically distributed observations from a normal 
distribution with mean 𝜇 and std 𝜎.

The sample mean and unbiased sample standard deviation are given by:
ẋ = (x1+…+xn)/n    [biological signal collected in the sample]
std2 = (1/(n-1)) 𝝨i (xi – xm)2  [noise collected in the sample]

(ẋ - 𝜇) / (std / √n) ∼ tn-1 is distributed according to a Student’s t-distribution with 
n-1 degrees of freedom

Student’s t-distribution

The t-statistic has a probability distribution that not depends on the unknown 𝜎



Student’s 
t-distribution



95% CI = ẋ + tn-1, 0.975 ∙ std/√(n). We use the t-tables to obtain these 
“critical” values 

Normal data, 𝛔 unknown: one sample t-confidence interval

Sample mean ẋ - 𝛍 is exactly distributed according to [std/√(n)] ∙ tn-1

If data are not normally distributed…

Confidence intervals for the normal distribution



t-distribution methods are robust when the sample size is large (n > 30). The 
data should not have extreme outliers or evidence of severe skewness.

For small samples it is risky to use t-confidence intervals. Only use if you are 
sure the population is roughly normally distributed and the sample has no 
outliers and very little skew. Otherwise, other methods (e.g. bootstrap, data 
transformation) should be used. 

Consequence of CLT 



Simulations

https://bioinformatics.cruk.cam.ac.uk/apps/stats/central-limit-theorem 

http://bioinformatics-core-shared-training.github.io/IntroductionToStats/practical.html

Shiny web application

Exercises



Inferential 

Statistics

13.30 - 13.45

Hypothesis testing

1) Statistical distribution 

3) Frequentist inference

2) Data 
generation



Hypothesis Testing

▪ A hypothesis is a statement about the population(s).

 Example n.1: Carboplatin induced response in at least 70% of NSCLC patients

 Example n.2: The mean pressure is the same in C57BL/6J and DBA/2J mice

 Example n.3: The two populations A and B have the same height distribution

▪ The goal of a hypothesis test is to decide, based on data collected, 
which of two complementary hypotheses is true.

 Example n.1: H0: RR < 0.70; H1: RR > 0.70

 Example n.2: H0: 𝛍1 = 𝛍2; H1: 𝛍1 ≠ 𝛍 

 Example n.3: H0: DA = DB; H1: DA ≠ DB



Hypothesis Testing

H0: null hypothesis
H1: alternative hypothesis

There is no symmetry between H0 and H1:

P
r
o 
c
e
d
u
r
e

1st step: We assume H0 to be true

2st step: The strength of evidence provided by the data against H0 is measured

3st step: If a contradiction is found, H1 is accepted.
     If a contradiction is not found, the method of proof fails and the 
     hypothesis H0 could be either true or false



Strength of evidence provided by the data

Data:   x1,…,xn

Test statistic:  ts = f(x1,…,xn)
P
r
o 
c
e
d
u
r
e

Distribution of the test statistic under H0:

The p-value is the statistical index used to measure the strength of evidence against H0.



Evidence provided by the data

H0: θ = 0,  θ ∈ {0, 1, 2}
H1: θ = 1,2

Distribution of the test statistic under H0:

ts 1 2 3 4

Prob (ts | H0) 0.980 0.005 0.005 0.010

P-value 1.00 0.01 0.01 0.020

An α significance level (e.g. 0.05) is simply a decision rule as to which p-values will cause one to 
reject the null hypothesis. In other words, it is merely a decision point as to how weird the data 
must be before rejecting the null model. If the p-value is less than or equal to α, the null is rejected. 
Implicitly, an α level determines what data would cause one to reject H0 and what data will not 
cause rejection. The α level rejection region is defined as the set of all data points that have a p-
value less than or equal to α.



The two types of errors in hypothesis testing

Decision

Accept H0 Reject H0

Truth
H0 Correct decision Type I error (𝜶)

H1 Type II error (𝜷) Correct decision

1. If the hypothesis test incorrectly decides to reject H0, then the test has made a 
Type I error  (i.e. false positive decision)

2. If the hypothesis test incorrectly decides to not reject H0, then the test has made 
a Type II error (i.e. false negative decision)



Statistical power

The power (1-𝜷) of a hypothesis test is the probability to reject the null 
hypothesis (H0) if H1 is true. It is a function of alternative simple hypotheses.

Distribution of the test statistic under H0:
ts 1 2 3 4

Prob (ts | H0) 0.980 0.005 0.005 0.010

P-value 1.00 0.010 0.010 0.020

Rejection region of the test 
with α significance level= 0.05 

ts 1 2 3 4

Prob (ts | θ = 1) 0.100 0.200 0.200 0.500

Prob (ts | θ = 2) 0.098 0.001 0.001 0.900

Distribution of the test statistic under H1:

(1-𝜷 | θ = 1) = 0.900 

(1-𝜷 | θ = 2) = 0.902 



Statistical power
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Distribution-free tests

A distribution-free test is one which makes no assumptions about the 
precise form of the sampled population or the assumptions are never so 
elaborate as to imply a population whose distribution is completely 
specified. 

Distribution-free tests Distribution-dependent tests

Sign test One-sample Student’s t-test

Wilcoxon signed-rank test Two-sample Student’s t-test

Wilcoxon rank-sum test Unequal variance t-test (i.e. Welch’s t-test)

• Bradley, J.V. (1968) Distribution-Free Statistical Tests. Prentice-Hall, Englewood Cliffs, NJ

• Kendall, M.G. and R.M.Sundrum, Distribution-Free Methods and Order Properties, Review of the International Statistical 
Institute, 3 (1953), 124-134



http://bioinformatics-core-shared-training.github.io/IntroductionToStats
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Exercises



Inferential 

Statistics

14.15 - 14.40

One-Sample tests

1) Statistical distribution 

3) Frequentist inference

2) Data 
generation



Assumptions: 1. the data are continuous
   2. sample data have been randomly sampled from a population
   3. independent observations xi, i=1,…,n
   4. the population is normally distributed

Hypotheses to test:   
H0: mean of the population distribution 𝛍 = 𝛍0

H1: 𝛍 ≠ 𝛍0

Test statistic:

 

    

ẋ = sample mean
s = sample standard deviation

One-sample Student’s t-test



One-sample Student’s t-test
Distribution of the test statistic: t-distribution with n-1 degrees of freedom



Sign test
Assumptions: 1. the data are continuous
   2. sample data have been randomly sampled from a population
   3. independent observations xi, i=1,…,n

Hypotheses to test:   
H0: median of the population distribution 𝜽 = 𝜽0

H1:  𝜽 ≠ 𝜽0

Test statistic: number of values above (or below) 𝜽0.

 

    



Distribution of the test statistic: binomial distribution, X ∼ Bin (n, 0.5)  

Sign test

In case of values equal to 𝜽0, discarde these values and apply the sign test only to the values above or below 𝜽0. 



Wilcoxon signed-rank test
Assumptions: 1. the data are continuous
   2. sample data have been randomly sampled from a population
   3. independent observations xi, i=1,…,n
   4. the population distribution is symmetric

Hypotheses to test:   
H0: median/mean of the population distribution 𝜽 = 𝜽0

H1:  𝜽 ≠ 𝜽0

Test statistic: sum of the positive signed ranks. 

    



Wilcoxon signed-rank test
n:      3
Raw data:     67, -12, 55
𝜽0:      50

Absolute differences:   5, 17, 62
Signed ranks:    +1, +2, -3

Test statistic:    +3 

    

Distribution of the test statistic: P(+1,+2,+3) = P(+1,+2,-3) = P(+1,-2,+3) =
         P(+1,-2,-3) = P(-1,+2,+3) = P(-1,+2,-3) =
      P(-1,-2,+3) = (-1,-2,-3)= 1/8, hence…



Wilcoxon signed-rank test

Distribution of the test statistic:

Sum of signed ranks 0 1 2 3 4 5 6

Probability 1/8 1/8 1/8 2/8 1/8 1/8 1/8

Two-sided p-value: 1.0
One-sided p-value: 5/8=0.625

At the significance level of 0.05, we can’t reject the null hypothesis (𝜽=50).



Take home message

The Wilcoxon signed-rank test is more powerful than the sign test 
because it makes use of the magnitudes of the differences rather than 
just their sign.

It should be the preferred method, but it makes a stronger assumption: 
the distribution of the differences is symmetric.

In case this assumption is doubtful, the sign test should be used. 
Graphical display is recommended.



Take home message

The one-sample location tests could be used for paired data samples.

Each paired data is summarized by the difference and the one-sample 
location tests are applied to the differences.

Experimental unit Paired data Difference

1 23-55 -32

… … …

k 107-100 7



Exercises

https://bioinformatics.cruk.cam.ac.uk/stats/shinystats/

http://bioinformatics-core-shared-training.github.io/IntroductionToStats/practical.html

Shiny web application

Exercises



Inferential 

Statistics

15.20 - 15.45

Two-Sample tests

1) Statistical distribution 

3) Frequentist inference

2) Data 
generation



Two-sample Student’s t-test

Assumptions: 1. data are continuous
   2. random sampling from the two populations
   3. independent observations xi, i=1,…,n1 and yj, j=1,...,n2 
   4. the two population distributions are normal
   5. equal variances s1

2 and s2
2

Hypotheses to test:   
H0: 𝛍1= 𝛍2

H1: 𝛍1 ≠ 𝛍2  

Test statistic: 

    

where

The statistic t has a Student's t distribution with n1+n2-2 degrees of freedom.



Assumptions: 1. data are continuous
   2. random sampling from the two populations
   3. independent observations xi, i=1,…,n1 and yj, j=1,...,n2 
   4. the two population distributions are normal

Hypotheses to test:
H0: 𝛍1= 𝛍2

H1: 𝛍1 ≠ 𝛍2  

Test statistic: 

    

The statistic t has 
a Student's t 
distribution with 
degrees of freedom:

Unequal variance t-test (i.e. Welch’s t-test)

where 𝜈i= ni - 1, i=1,2



Student’s t-test and Welch’s t-test

n1 n2 s1 s2 t-test ⋆ Unequal ⋆ 

11 11 1 1 0.052 0.051

11 11 4 1 0.064 0.054

11 21 1 1 0.052 0.051

11 21 4 1 0.155 0.051

11 21 1 4 0.012 0.046

25 25 1 1 0.049 0.049

25 25 4 1 0.052 0.048

When sample sizes are unequal, the Type I error probabilities of the Student’s t-test is 
decidedly influenced by unequal variances. Similar results have been found for type II error 

probabilities and statistical power. 

⋆  Type I error rate for the t-test and unequal variance t-test with nominal type I error of 0.05



Take home message

• Student's t-test is robust under violation of homogeneity of 
variance provided sample sizes are equal.

• When sample size are unequal the type I error, type II error and 
statistical power of the Student’s t-test are decidedly influenced 
by unequal variances.

• Even when the variances are identical, the Welch’s t-test performs 
well in terms of type I error, type II error and statistical power.



Take home message

• Unless an argument based on logical, physical, or biological 
grounds can be made as to why the variances are very likely to be 
identical for the two populations, the Welch’s t-test should be 
applied.

    
• It is not recommended to pre-test for equal variances and then 

choose between Student's t-test or Welch's t-test ⋆ . 
     Graphical display is recommended to qualitatively evaluate the
     difference between sample variances.

⋆  Zimmerman DW. A note on preliminary tests of equality of variances. Br J Math Stat Psychol. 2004 May;57(Pt 1):173-81. 
doi: 10.1348/000711004849222. PMID: 15171807



If the assumption of 
normality of the 
underlying populations 
is violated?



Assumptions: 1. data are ordinal or continuous
   2. random sampling from the two populations
   3. independent observations xi, i=1,…,n1 and yj, j=1,...,n2 

Hypotheses to test:   
H0: the population distributions are the same (G=F).
H1: G ≠ F (two-sided H1) or G < F ⋆ (one-sided H1) or G > F ∘ (one-sided H1).
                 ⋆ G is shifted to the left of F
                 ∘ G is shifted to the right of F

Test statistic: sum of the ranks from one of the two groups. 

Wilcoxon rank-sum test



Calculation of the test statistic
ID mouse Group Outcome Rank Sum rank Average rank Sum of ranks

1 A 0 1

10 2.5

Group A: 162.5
5 A 0 2 Group B: 302.5
8 A 0 3

14 A 0 4
6 A 1 5

45 7.5

9 A 1 6
11 A 1 7
12 A 1 8
15 A 1 9
21 B 1 10
2 A 2 11

50 12.5
7 A 2 12

24 B 2 13
25 B 2 14
3 A 3 15

126 18

13 A 3 16
16 B 3 17
20 B 3 18
23 B 3 19
26 B 3 20
29 B 3 21
4 A 4 22

120 24
17 B 4 23
18 B 4 24
19 B 4 25
28 B 4 26
22 B 5 27

55 27.5
30 B 5 28
27 B 7 29 29 29
10 A 8 30 30 30



Distribution of the test statistic

▪  Simulation: rank j as the same probability to be assigned to one 
      group or the other.

▪ For large samples, a normal approximation with known mean and 
variance can be applied.

▪  

Group 1, ranks 3,4,5 2,4,5 1,4,5 2,3,5 1,3,5

Test statistic 12 11 10 10 9

Probability under H0 0.1 0.1 0.1 0.1 0.1

Group 1, ranks 2,3,4 1,3,4 1,2,4 1,2,3 1,2,5

Test statistic 9 8 7 6 8

Probability under H0 0.1 0.1 0.1 0.1 0.1

n1 = 3 
n2 = 2



Distribution-free tests vs t-tests

Situations which may suggest the use of distribution-free tests: 

1. When one outcome has a distribution other than normal.

2. When the data are ordered with many ties or are rank ordered.

3. When the data has notable outliers.

4. When there is a small sample size. 



We can transform the data mathematically…

▪ to make them fit the normality 
     more closely

▪ to obtain more similar variances 

▪ to handle outliers

Data transformations



We can transform the data mathematically into… 
1. the logarithm (xi > 0, i=1,…n)
2. the square root (xi > 0, i=1,…n) 
3. the reciprocal (xi > 0, i=1,…n)

Take home message:
• These transformations could be useful to obtain normality, similar variance and 

handling outliers

• The best choice depends on the relationship between variability and mean. 
Graphical display of data is useful to choose the 

      best transformation

• Not all data can be transformed successfully

The most common used transformations



Assumptions: 1. Student’s t-test assumptions or
   2. Welch’s t-test assumptions

Hypotheses to test:         
H0: The population distributions are the same (G=F) ⋆ ⋆ 
H1: G ≠ F (two-sided H1) or G < F ⋆ (one-sided H1) or G > F ∘ (one-sided H1)
 ⋆ G is shifted to the left of F
 ∘ G is shifted to the right of F

⋆ ⋆ Previous data transformations are monotonic. Hence,
    G=F on the natural scale if and only if G=F on the transformed scale

Test statistic: Student’s test statistic or Welch’s test statistic   

Hypothesis to be tested after data transformations



Hypothesis to be tested after data transformations

• Mean log-normal: exp(𝝁 + 𝝈2 / 2)

• Median log-normal: exp(𝝁)

• If 𝝁1 = 𝝁2 then Median1 = Median2 

• If 𝝁1 = 𝝁2 and 𝝈1 ≠ 𝝈2 then Mean1 ≠ Mean2 

Log-normal distribution

Properties of the log-normal distribution

Consequences



Exercises

https://bioinformatics.cruk.cam.ac.uk/stats/shinystats/

http://bioinformatics-core-shared-training.github.io/IntroductionToStats/practical.html

Shiny web application

Exercises
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