Introduction to Statistical Analysis

Cancer Research UK Cambridge Institute — 37 of October 2025
Luca Porcu & Chandra Chilamakuri (Bioinformatics core)

-.' > CANCER
5, . RESEARCH
) . . e. UK

Cambridge
Institute

QP

UNIVERSITY OF
CAMBRIDGE



Timeline
o Morning (9.30-12.30)

. Basic concepts of Statistics o > Exercises
@ Data types and descriptive statistics e > Online quiz
B Central limit theorem (CLT) . Simulations
@ 'nferential statistics: estimation » Simulations
o Lunch
o Afternoon (13.30-17.00)
. Inferential statistics: basic concepts . > Exercises
B nferential statistics: one-sample tests o > Exercises
B Inferential statistics: two-sample tests . > Exercises

B Group based exercises and discussion
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Random experiment

Model generating data -

* Parameter

Toss number 1 2 3 99 100
Data .......... .
Result H T T H T




Components of a statistical model
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Basic statistical concepts

Bertrand Russell




Parametric, nonparametric and robust statistics

Nonparametric statistics Parametric statistics Robust statistics
allows all possible statistical allows only a very thin subset allows a full (namely full-
models and reduces the of all statistical models, but dimensional) neighborhood
ignorance about them only information is completely of a parametric model, thus
by one or a few dimensions captured by few parameters being more realistic and yet,

providing the same
advantages as a strict

EHampel FR, Ronchetti E, Rousseeuw PJ, Stahel WA. parametric model
Robust Statistics: The Approach Based on Influence Functions. New York: Wiley; 1986.



Exercises

Exercises

http://bioinformatics-core-shared-training.github.io/IntroductionToStats
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Data analysis: descriptive statistics

Here, the data are analyzed on their own terms, essentially
without extraneous assumptions.
The principal aim is the organization and summarization of the
data in ways that bring out their main features and clarify their

underlying structure.
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Categoryl| 3500 25%
Category2| 4100 29%
Category3| 6350 46%
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E.L. Lehmann, George Casella, Theory of Point Estimation, Second Edition



Descriptive statistics in preclinical research

Baseline data
(e.g. strain, sex, age, weight, housing)

T Kilkenny C, Parsons N, Kadyszewski E, Festing MFW, Cuthill IC, et al. (2009) Survey of the Quality of Experimental Design,
Statistical Analysis and Reporting of Research Using Animals. PLoS ONE 4(11): e7824. doi:10.1371/journal.pone.0007824

Table 7. Number of studies reporting the sex of the animals.

Species No Yes Unclear Yes (%)
Mouse (n=72) 24 47 1 65
Primate (n=86) 30 55 1 64

Rat (n=113) 15 98 0 87

All (n=271) 69 200 2 74+

774% (200/271) of all studies reported the sex of the animals used in the main
experiment.
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Data types

OPPOSITES

Qualitative

| > Binary/dichotomous

200000000900090

| > Nominal

| > Ordinal

Quantitative

| > Interval scale (arbitrary zero point)

'<""_'><fb_'5300

| > Ratio scale (meaningful zero point)

<



Data types

OPPOSITES

Qualitative
| > Binary/dichotomous %
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Descriptive statistics, univariate analysis

Histotype N %
Serous 48 41.7
Undifferentiated 22 19.1
Endometrioid 21 18.3
Mucinous 16 13.9
Clear cell 8 7.0

Nominal data

> Serous is the mode.

The mode is the category that appears
most often in a set of data values.

@l serous

B undifferentiated
B endometrioid

B mucinous
Ciclear cell




Descriptive statistics, univariate analysis

Grading N %

G1 48 45.7
G2 18 17.1
G3 23 21.9
G4 16 15.2

Ordinal data

> @1 is the mode.

> G2 is the median.

The median is the category separating the
higher half from the lower half of a data
sample

Bar chart

G1 G2 G3 G4

Grading

50
|

y
40

30
|

20
|

Absolute frequenc

10




Descriptive statistics, univariate analysis

Discrete data

N. of metastases N %

0 20 16.3 | > 1 metastasis is the mode.

1 45 36.6 | > 1 metastatis is the median.

2 30 24.4 | > 1.7 is the mean number of metastases.
3 12 9.8 ]

4 10 8.1 ]
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Descriptive statistics, univariate analysis

Weight (kg) N (%) N/10kg
0-| 50 10 (5.7) 2

50-] 60 10 (5.7) 10
60 -| 70 23 (13.1) 23
70 -] 80 45 (25.7) 45
80 -| 90 40 (22.9) 40
90 -| 130 47 (26.9) 11.8

| > 70 -| 80is the modal interval.

| > 70 -| 80is the median interval.

| > 81.4 kg is the mean weight of patients.

Histogram
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Descriptive statistics, univariate analysis

Properties of the mean Quantitative data

o Xila-p)=0
o Xila-u)*<Xi(a-x)5, x#
o Linearity

o Associative property



Descriptive statistics, univariate analysis

Measures of heterogeneity

S
H o= —Z D. In P,  Shannon diversity index
=1

Measures of variability

Qualitative data

Quantitative data

o (X |a,-M])/n, where M is a measure of central tendency

o V[(X:|ai- M|?)/n], if M = u, it is called standard deviation (o)

o Interquartile range (IQR)



Descriptive statistics, bivariate analysis
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Descriptive statistics, bivariate analysis

Take home message:
Paired data are not independent. They correlate.
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Online quiz

Exercises

http://bioinformatics-core-shared-training.github.io/IntroductionToStats
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Data analysis: frequentist inference

Random events.

Empirical phenomena which have the following two features:

1. They do not have deterministic regularity (i.e. observations
of them do not always yield the same outcome)

2. They possess some statistical regularity, indicated by the
statistical stability of their frequencies.

Shiryaev Albert N., Probability-1, Third Edition



Data analysis: frequentist inference

Mathematical analysis of random events.

= Random events are more or less adequately described by
statistical distributions (e.g. normal distribution).

= Statistical regularity is captured by parameters of statistical
distributions (e.g. mean and standard deviation of the

normal distribution).



Probability distribution

Def: In probability theory and statistics, a probability distribution is the
mathematical function that gives the probabilities of occurrence of different
possible outcomes for an experiment.

Prob, Prob, Prob; could be interpreted as parameters
l Pr|obj ‘ of a general statistical distribution

@ () : () @ Outcome

https://en.Wikipedia.org/wiki/Probability distribution, 15th August 2024



Binomial distribution

Def: the binomial distribution with parameters n and p is the discrete statistical
distribution of the number of successes in a sequence of n independent trials. Each trial
(Bernoulli trial) has a binary outcome: success with probability p and failure with
probability 1-p. n=20
p=0.40

0.10 0.15 0.20

Probability

0.05

Assumptions of the binomial distribution | |
012 3 456 7 8 91011121314 1516 17 18 19 20

- The outcome of each trial is binary (0/1) Number of successes
- Each Bernoulli trial is independent (i.e. the outcome of each trial does not depend on
the outcome of the other trials)

- The probability of success p is constant (i.e. it does not change for each trial)

0.00




Poisson distribution

Def: the Poisson distribution with parameter A is the discrete probability
distribution of the number of events that occur randomly and uniformly in a fixed time

(=
o

Interval or in a given area. : A=4

o Independence of events: the occurrence of one event |
does not affect the probability that another event will | 1L
Occur 0123 456 I’Iur?‘|b9er100f1;\:r-32n1t: 14 1516 17 18 19 20

0.15

Assumptions of the Poisson distribution

Probability
0.10

o The outcome is a count [0,1,...,k,...]

0.05

0.00

o Two events cannot occur at exactly the same instant in time or at the same point of

the given area
o Events occur at a uniform rate over the entire time period or area. A is the expected

(mean) number of events per time/area unit



Normal distribution

Def: a normal distribution or Gaussian distribution is a type of continuous
probability distribution. It is determined by two parameters (u, o).

1) the parameter p is the mean or expectation  *
of the distribution (and also its median and
mode)

2) the parameter o is its standard deviation

gomily —
0wl e
=t LWl |
0" m[] Y =—

=
E- O

Aidan Lyon, Why are Normal Distributions Normal?, The British Journal for the Philosophy of Science 2014 65:3, 621-649



Other statistical distributions

Hypergeometric distribution Beta distribution Gamma distribution
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Data analysis: frequentist inference

Here, it is assumed that data are generated by a statistical

distribution with parameters n,0,..., .
The principal aim is

—— 1) Statistical distribution

---------------

E.L. Lehmann, George Casella, Theory of Point Estimation, Second Edition




...to be clear about frequentist inference

Population Sample
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Data analysis: bayesian inference

The basic paradigm of bayesian statistics

Initial beliefs concerning a parameter 0 of

0.08 —Prior interest are expressed as a prior distribution
007 - ——Likelihood
—Fostenor

A 4

Evidence from further data is summarized by
a likelihood function for the parameter O

Likelinood 400
=
=

|

0.03
il Using Bayes theorem (i.e. normalized product
0.t of the prior and the likelihood) initial beliefs
0 - are updated to form the posterior
0 10 20 30 40 &0 Bl 70 a0 a1 100

distribution, on the basis of which
conclusions on the parameter 0 should be
drawn

Farameter value &

D.J. Spiegehalter et al., Bayesian Approaches to Randomized Trials, J.R. Statist. Soc. A (1994) 157, Part 3, pp. 357-416



A practical example of bayesian inference

Prior After S Another S Then F

I I I I I I I I I | I I I I I I I I I | I I I I I I I I I | I I I I I I I I I |
0 0102 03040506070809 1 0 0102030405¢06070809 1 0 0102030405¢06070809 1 0 010203040506 070809 1

p p p p
Then S Another S Then F Then S
| I I I I I I I I | L I I I I I I I | I I I I I I I I | I I I I I I I I |
0 010203040506070809 1 0 0102030405¢06070809 1 0 0102030405¢06070809 1 0 010203040506 070809 1
p p p p
Another S Another S Final Next observation
If F IfS

I I I I I I I I I I I I I I I I I I | I I I I I I I I I | I I I I I I I I I |
0 010203040506070809 1 0 0102030405¢06070809 1 0 0102030405¢06070809 1 0 010203040506 070809 1

P P P p

Berry DA. Bayesian clinical trials. Nat Rev Drug Discov. 2006 Jan;5(1):27-36. doi: 10.1038/nrd1927. PMID: 16485344



Data analysis: bayesian inference

The recourse to the prior distribution on the parameters of a
model is questionable. There is in fact a major step from the
notion of an unknown parameter to the notion of a random

parameter.

Edwards AW.F,, Likelihood (Expanded Edition), 1992
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Central limit theorem (CLT)

Let X,,...,X,, be independent and identically distributed
random variables with mean u and standard deviation o

|

The sample mean x is a statistic obtained by calculating the
arithmetic average of the values of X,,..., X, in a sample

|

CLT: x is distributed as N (u, o/V(n)) as the sample size n
gets larger




Central limit theorem (CLT)

CENTRAL LIMIT THEOREM
Normal ‘ Uniform Skewed Random
Poputation | A 1| &
Central limit . l | I
theorem SRy UV Ny r

Sampling Distribution of Means

The usefulness of the CLT is that the distribution of sample means approaches normality
regardless of the distribution of the population



Confidence intervals

In frequentist inference, a confidence interval (Cl) is a range of estimates for an
unknown parameter O.

It is computed at a designated confidence level
(e.g., 95% Cl). The confidence level represents the | IR [ ST
long-run proportion of Cls that theoretically SERETE. S
contain the true value of the parameter O. : SRR

For example, out of all intervals computed at the R B e D
95% level, 95% of them should contain the R ST
parameter’s true value. 18 B

https://en.wikipedia.org/wiki/Confidence_interval, 15t" August 2024



Confidence intervals for the normal distribution

Normal data, o0 known: one sample z-confidence interval

Sample mean xis exactly distributed according to N (i, o/V(n))

95% Cl = X + 25 475 - 6/V(N), where z; 475 = 1.96

If you do not know o

-
&
n



Student’s t-distribution

Let x4,...,X, be independent and identically distributed observations from a normal
distribution with mean u and std o.

The sample mean and unbiased sample standard deviation are given by:
X = (X;+...4X,)/n [biological signal collected in the sample]
std? = (1/(n-1)) X; (x; — X,,,)? [noise collected in the sample]

(X - u)/ (std /Vvn) ~ t_ ,is distributed according to a Student’s t-distribution with
n-1 degrees of freedom

The t-statistic has a probability distribution that not depends on the unknown o




0.40
0.35
0.30
0.25

X0.20
0.15
0.10
0.05
0.00

Student’s

t-distribution




Confidence intervals for the normal distribution

Normal data, 0 unknown: one sample t-confidence interval

Sample mean x - nis exactly distributed according to [std/V(n)] - ¢, ,

95% Cl =X+ t,., o975 Std/V(n). We use the t-tables to obtain these
“critical” values

\Y
vi _

If data are not normally distributed...



Consequence of CLT

t-distribution methods are robust when the sample size is large (n > 30). The
data should not have extreme outliers or evidence of severe skewness.

For small samples it is risky to use t-confidence intervals. Only use if you are
sure the population is roughly normally distributed and the sample has no
outliers and very little skew. Otherwise, other methods (e.g. bootstrap, data

transformation) should be used.



Simulations

Exercises

http://bioinformatics-core-shared-training.github.io/IntroductionToStats/practical.html

Shiny web application

https://bioinformatics.cruk.cam.ac.uk/apps/stats/central-limit-theorem
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Hypothesis Testing

" A hypothesis is a statement about the population(s).

Example n.1: Carboplatin induced response in at least 70% of NSCLC patients
Example n.2: The mean pressure is the same in C57BL/6J and DBA/2J mice
Example n.3: The two populations A and B have the same height distribution

" The goal of a hypothesis test is to decide, based on data collected,
which of two complementary hypotheses is true.

Example n.1: H,: RR<0.70; H;: RR>0.70
Examplen.2: Hg: W, =W, H:pyz
Example n.3: H,: D, = Dg; Hy: Dy # Dy



Hypothesis Testing

Hy: null hypothesis
H,: alternative hypothesis

There is no symmetry between Hy and Hy:

15t step: We assume H, to be true

25t step: The strength of evidence provided by the data against H, is measured

3%t step: If a contradiction is found, H, is accepted.
If a contradiction is not found, the method of proof fails and the
hypothesis H, could be either true or false

<(D—1CQ.(DOOﬂ-U



Strength of evidence provided by the data

Data: X1, X
P
| Test statistic: t, = f(Xqg,...,%,)
(0] sam pl;.?::lu stril m.-..q of
C ."I:-:-'.llﬂl:: l':-ul.l "I'.'u-c.lt.l't':i':- is Trise
e /"‘n&
d . \
| Distribution of the test statistic under Hy: | f/ \
bak ||.-r:|'_|:;.::_|‘ .\'-\.x
€ .llé-._'._-rl.—.l.'.".":.-":"'!’f{ H\\h';

v The p-value is the statistical index used to measure the strength of evidence against H,.



Evidence provided by the data

Hy: 0 =0, 0 €01, 2}
H,:0=1,2

Distribution of the test statistic under H:

t, 1 2 3 4
Prob (t, | H,) | 0.980 0.005 0.005 0.010
P-value 1.00 0.01 0.01 0.020

An a significance level (e.g. 0.05) is simply a decision rule as to which p-values will cause one to
reject the null hypothesis. In other words, it is merely a decision point as to how weird the data
must be before rejecting the null model. If the p-value is less than or equal to a, the null is rejected.
Implicitly, an a level determines what data would cause one to reject H, and what data will not

cause rejection. The a level rejection region is defined as the set of all data points that have a p-
value less than or equal to a.



The two types of errors in hypothesis testing

Decision
Accept H, Reject H,
H, Correct decision Type | error («)
Truth
H, Type ll error () | Correct decision

1. If the hypothesis test incorrectly decides to reject H,, then the test has made a
Type | error (i.e. false positive decision)

2. If the hypothesis test incorrectly decides to not reject H,, then the test has made
a Type |l error (i.e. false negative decision)



Statistical power

The power (1-f) of a hypothesis test is the probability to reject the null
hypothesis (H,) if H; is true. It is a function of alternative simple hypotheses.

Distribution of the test statistic under H:

Rejection region of the test
t 1 2 3 4 with a significance level= 0.05
Prob (t, | Hy) 0.980 0.005 0.005 0.010
P-value 1.00 0.010 0.010 0.020

Distribution of the test statistic under H;:

t, 1 2 3 4
Prob(t, | ©6=1) |0.100 0.200 0.200 0.500 — (1-$ |1 6=1)=0.900
Prob (t, | ©=2) |0.098 0.001 0.001 0.900 — (1-£ | 6=2)=0.902
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Distribution-free tests

A distribution-free test is one which makes no assumptions about the
precise form of the sampled population or the assumptions are never so
elaborate as to imply a population whose distribution is completely
specified.

Distribution-free tests Distribution-dependent tests

Sign test One-sample Student’s t-test

Wilcoxon signed-rank test Two-sample Student’s t-test

Wilcoxon rank-sum test Unequal variance t-test (i.e. Welch'’s t-test)

* Bradley, J.V. (1968) Distribution-Free Statistical Tests. Prentice-Hall, Englewood Cliffs, NJ

* Kendall, M.G. and R.M.Sundrum, Distribution-Free Methods and Order Properties, Review of the International Statistical
Institute, 3 (1953), 124-134



Exercises

Exercises

http://bioinformatics-core-shared-training.github.io/IntroductionToStats
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One-sample Student’s t-test

Assumptions: 1. the data are continuous
2. sample data have been randomly sampled from a population
3. independent observations x;, i=1,...,n
4. the population is normally distributed

Hypotheses to test:
Hy: mean of the population distribution p = p,
Hii  1# U
T — .
. t X = sample mean
Test statistic:

S/\/7 s = sample standard deviation



One-sample Student’s t-test

Distribution of the test statistic: {-distribution with n-1 degrees of freedom

0.40
0.35}
0.30}
0.25}

= 0.20/
0.15}
0.10}
0.05}
0.00




Sign test

Assumptions: 1. the data are continuous

2. sample data have been randomly sampled from a population
3. independent observations x;, i=1,...,n

Hypotheses to test:
Hy:  median of the population distribution 8 = 0,
Hi: 0=#80,

Test statistic: number of values above (or below) Q,.



Sign test

Distribution of the test statistic: binomial distribution, X ~ Bin (n, 0.5)

Binomial Distribution
n=10,p=05

0.30
0.25

0.20
P(x) 0.15
0.10
0.05 . I
0.00 — l -
0 1 2 3 4 5 6 7 8 9 1

Number of successes (x)

0

In case of values equal to @, discarde these values and apply the sign test only to the values above or below 8.



Wilcoxon signed-rank test

Assumptions: 1. the data are continuous
2. sample data have been randomly sampled from a population
3. independent observations x;, i=1,...,n
4. the population distribution is symmetric

Hypotheses to test:
Hy,:  median/mean of the population distribution 8 = 0,
Hi: 0=#80,

Test statistic: sum of the positive sighed ranks.



Wilcoxon signed-rank test

n: 3

Raw data: 67,-12,55

0, 50

Absolute differences: 5,17, 62

Signed ranks: +1, +2, -3

Test statistic: +3

Distribution of the test statistic: P(+1,+2,+3) = P(+1,+2,-3) = P(+1,-2,+3) =

P(+1I-21_3) = P(-1)+2)+3) = P(-1;+2;_3) =
P(-1,-2,+3) = (-1,-2,-3)= 1/8, hence...



Wilcoxon signed-rank test

Distribution of the test statistic:

Sum of signed ranks |0 1 2 3 4 5 6
Probability 1/8 1/8 1/8 2/8 1/8 1/8 |1/8

Two-sided p-value: 1.0
One-sided p-value: 5/8=0.625

At the significance level of 0.05, we can’t reject the null hypothesis (6=50).



Take home message

The Wilcoxon signed-rank test is more powerful than the sign test
because it makes use of the magnitudes of the differences rather than
just their sign.

It should be the preferred method, but it makes a stronger assumption:
the distribution of the differences is symmetric.

In case this assumption is doubtful, the sign test should be used.
Graphical display is recommended.



Take home message

The one-sample location tests could be used for paired data samples.

Each paired data is summarized by the difference and the one-sample
location tests are applied to the differences.

Experimental unit Paired data Difference
1 23-55 -32

k 107-100 7




Exercises

Exercises

http://bioinformatics-core-shared-training.github.io/IntroductionToStats/practical.html

Shiny web application

https://bioinformatics.cruk.cam.ac.uk/stats/shinystats/



3% CANCER | cambridge
o 5§SEARCH Institute
an . .o. ....

1) Statistical distribution

-------------

2) Data Inferential
generation Statistics

*
I
I
I
I
I
I
I
I
I
I
I
v

Two-Sample tests

15.20 - 15.45

Together we are
beating cancer



Two-sample Student’s t-test

Assumptions: 1. data are continuous
2. random sampling from the two populations
3. independent observations x;, i=1,...,n; and y;, j=1,...,n,
4. the two population distributions are normal
5. equal variances s, and s,?

Hypotheses to test:
Ho: W= 1
Hii  # I
- x: 1— X5 l where S, — \/(nl — 1)5j+ (}'?22 1)s3
Test statistic: g \‘! e L

The statistic t has a Student's t distribution with n,;+n,-2 degrees of freedom.



Unequal variance t-test (i.e. Welch’s t-test)

Assumptions: 1. data are continuous
2. random sampling from the two populations
3. independent observations x;, i=1,...,n; and y;, j=1,...,n,
4. the two population distributions are normal

Hypotheses to test:
Ho: W= Iy
Hii  m# I
r1 — X9 The statistic t has 2 2\’
L= a Student's t (‘*_ll T )
Test statistic: 5%’ 55 AR , v.o= ” 3
= —= distribution with 1y =
ﬂfl I 32 Niw Ny 14

degrees of freedom:

where vi=n;- 1, i=1,2




Student’s t-test and Welch'’s t-test

n, n, S, S, t-test* | Unequal*
11 11 1 1 0.052 0.051
11 11 4 1 0.064 0.054
11 21 1 1 0.052 0.051
11 21 4 1 0.155 0.051
11 21 1 4 0.012 0.046
25 25 1 1 0.049 0.049
25 25 4 1 0.052 0.048

* Type | error rate for the t-test and unequal variance t-test with nominal type | error of 0.05

When sample sizes are unequal, the Type | error probabilities of the Student’s t-test is
decidedly influenced by unequal variances. Similar results have been found for type Il error
probabilities and statistical power.



Take home message

e Student's t-test is robust under violation of homogeneity of
variance provided sample sizes are equal.

* When sample size are unequal the type | error, type Il error and

statistical power of the Student’s t-test are decidedly influenced
by unequal variances.

 Even when the variances are identical, the Welch’s t-test performs
well in terms of type | error, type Il error and statistical power.



Take home message

* Unless an argument based on logical, physical, or biological
grounds can be made as to why the variances are very likely to be
identical for the two populations, the Welch’s t-test should be

applied.

* Itis not recommended to pre-test for equal variances and then
choose between Student's t-test or Welch's t-test *.
Graphical display is recommended to qualitatively evaluate the
difference between sample variances.

* Zimmerman DW. A note on preliminary tests of equality of variances. Br J Math Stat Psychol. 2004 May;57(Pt 1):173-81.
doi: 10.1348/000711004849222. PMID: 15171807



If the assumption of
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Wilcoxon rank-sum test

Assumptions: 1. data are ordinal or continuous

2. random sampling from the two populations

3. independent observations x;, i=1,...,n; and y;, j=1,...,n,

Hypotheses to test:
Hy:  the population distributions are the same (G=F).
H,: G #F(two-sided H;)or G< F * (one-sided H;) or G>F° (one 5|ded H,).

* @G is shifted to the left of F
° G is shifted to the r|ght of F : s ‘

Test statistic: sum of the ranks from one of the two groups.




Calculation of the test statistic

ID mouse  Group Outcome Rank Sum rank Average rank Sum of ranks
1 A 0 1 Group A: 162.5
5 A 0 2 Group B: 302.5
3 A 0 3 10 2.5
14 A 0 4
6 A 1 5
9 A 1 6
11 A 1 7
12 A 1 3 45 7.5
15 A 1 9
21 B 1 10
2 A 2 11
7 A 2 12
24 B ) 13 50 12.5
25 B 2 14
3 A 3 15
13 A 3 16
16 B 3 17
20 B 3 18 126 18
23 B 3 19
26 B 3 20
29 B 3 21
4 A 4 22
17 B 4 23
18 B 4 24 120 24
19 B 4 25
28 B 4 26
22 B 5 27

30 B 5 )8 55 27.5
27 B 7 29 29 29
10 A 8 30 30 30




Distribution of the test statistic

Group 1, ranks 3,4,5 2,4,5 1,4,5 2,3,5 1,3,5

- Test statistic 12 11 10 10 9
Probability under H, 0.1 0.1 0.1 0.1 0.1 N, = 3
Group 1, ranks 2,3,4 1,3,4 1,2,4 1,2,3 1,2,5 n, = 2
Test statistic 9 8 7 6 8
Probability under H,, 0.1 0.1 0.1 0.1 0.1

"  Simulation: rank j as the same probability to be assigned to one
group or the other.

" Forlarge samples, a normal approximation with known mean and
variance can be applied.



Distribution-free tests vs t-tests

Situations which may suggest the use of distribution-free tests:

1. When one outcome has a distribution other than normal.
2. When the data are ordered with many ties or are rank ordered.
3. When the data has notable outliers.

4. When there is a small sample size.



Data transformations

We can transform the data mathematically...

250 1504
" to make them fit the normality = 2 100 ﬁ
§ 1507 ° > § |
more closely £ 100 g /_,VZ
50
0- 0 .

T T T
0 100 200 300 -1 0 1 2 3
Ulcer area (sq cm) Log10 (Ulcer area)

]
]
1

= I 4 =
o 151 ) g4 . o e
| b l l 'I l 5104 o o > 2 28 &
to obtain more similar variances 2| - . . >t g% 24 iy
2 54 & % i < T 4 o et
é 0 ;@ | ‘t L0 é 3 % ;_ ¢ % +
No R4, no oedema RA RA+oedema Mo RA, an:) oedema RIA RA+oédema
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2000 3- <
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500+ S 0- % & &
01 ‘ o i -1 3
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The most common used transformations

We can transform the data mathematically into...
1. the logarithm (x, > 0, i=1,...n)

2. the square root (x, >0, i=1,...n)

3. the reciprocal (x, >0, i=1,...n)

Take home message:

 These transformations could be useful to obtain normality, similar variance and
handling outliers

 The best choice depends on the relationship between variability and mean.
Graphical display of data is useful to choose the
best transformation

 Not all data can be transformed successfully Jﬂjm&

100 200
Systolic BP (mm Hg)




Hypothesis to be tested after data transformations

Assumptions: 1. Student’s t-test assumptions or
2. Welch’s t-test assumptions

Hypotheses to test:

Hyo:  The population distributions are the same (G=F) **

H;: G #F (two-sided H,) or G< F *(one-sided H;) or G > F °(one-sided H,)
* G is shifted to the left of F

° G is shifted to the right of F I —

**Previous data transformations are monotonic. Hence,

G=F on the natural scale if and only if G=F on the transformed scale

Test statistic: Student’s test statistic or Welch’s test statistic



Hypothesis to be tested after data transformations

Log-normal distribution

Properties of the log-normal distribution

H=———— ¢ Mean log-normal: exp(u + 62/ 2)
1.51 e Median |og-norma|: eXp(M)

PDF
5

Consequences

0.5+

* If u; = u,then Median,; = Median,

= * Ifu,=pu,ando, # 0,then Mean, # Mean,

X

0.0 '
0.0 0.5




Exercises

Exercises

http://bioinformatics-core-shared-training.github.io/IntroductionToStats/practical.html

Shiny web application

https://bioinformatics.cruk.cam.ac.uk/stats/shinystats/
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