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4Fisher’s one-way ANOVA

Treatment 
assignment

1. The unit k (e.g. mouse), k = 1,…,ui; N = 𝝨i ui Equation of the statistical model:
yik = μ + τi + εik2. τi: effect of treatment i, i = 1,…,n

Group1

3. εik: the random part of the model (i.e. error
term of the model). It is a blanket 
characterization of the uniqueness of the kth unit
assigned to group i 

𝝁

Assumptions of ANOVA (ANalysis Of VAriance) models are the following:
§ The effect of each treatment level i is additive on 𝝁 (i.e. population mean) parameter
§ εik is assumed to be independent of one another and normally distributed with mean = 0 and common

standard deviation = σ

Group2 Group3



5Fisher’s one-way ANOVA
Hypothesis to test: 𝝉1 = … = 𝝉n = 0 

Test statistic:

Source of 
variation

Sum of Squares Degrees of 
freedom

Mean Squares Fdf1,df2 p-value

Treatment SSB = 𝝨i ui (mi - M)2 df1 = n -1 MSB = SSB / df1 MSB / MSE 0.023
Residuals SSE = 𝝨i 𝝨k (yik – mi)2 df2 = N - n MSE = SSE / df2
Total SST = SSB + SSE

Note: the ANOVA divides the total variation in the response into parts.

R implementation
Step Aim R function
1 We should fit our data to the ANOVA model fitModel = lm(Response ~ Treatment, data=dSet)

2 We can get R to produce an ANOVA table anova(fitModel)

Legend: mi is the sample mean of group i. M is the overall mean response



6Fisher’s two-way ANOVA

Treatment 
assignment

1. The unit k (e.g. mouse), k = 1,…,uij; N = 𝝨ij uij Equation of the statistical model:
yijk = μ + τi + 𝜼j + εijk2. τi: effect of treatment i, i = 1,…,n; 𝝶j: effect of treatment j, j = 1,…,r

3. εijk: the random part of the model (i.e. error
term of the model). It is a blanket 
characterization of the uniqueness of the kth unit
assigned to group ij

𝝁
Group1A Group2A Group3A

Group1B Group2B Group3B



7Fisher’s two-way ANOVA
Hypothesis to test n.1: 𝝉1 = … = 𝝉n = 0 

Test statistic:

Source of 
variation

Sum of Squares Degrees of 
freedom

Mean Squares Fdf1,df2 p-value

Treatment 𝝉 SSB𝝉 = 𝝨i ui (mi - M)2 df1𝝉 = n - 1 MSB𝝉 = SSB𝝉 / df1𝝉 MSB𝝉 / MSE 0.023
Treatment 𝜼 SSB𝜼 = 𝝨j ui (mj - M)2 df1𝜼 = r - 1 MSB𝜼 = SSB𝜼 / df1𝜼 MSB𝜼 / MSE 0.150
Residuals SSE = 𝝨ij 𝝨k (yijk – mij)2 df2 = N - (n ⋅ r) MSE = SSE / df2

Total SST = SSB𝝉 + SSB𝜼 SSE

Note: the ANOVA divides the total variation in the response into parts.

R implementation
Step Aim R function
1 We should fit our data to the ANOVA model fitModel = lm(Response ~ Treat𝝉 + Treat𝜼, data=dSet)

2 We can get R to produce an ANOVA table anova(fitModel)

Hypothesis to test n.2: 𝜼1 = … = 𝜼r = 0 



8Fisher’s two-way ANOVA with interaction
1. The unit k (e.g. mouse), k = 1,…,uij; N = 𝝨ij uij Equation of the statistical model:

yijk = μ + τi + 𝜼j + τi:𝜼j + εijk

Treatment 
assignment

3. εijk: the random part of the model (i.e. error
term of the model). It is a blanket 
characterization of the uniqueness of the kth unit
assigned to group ij

𝝁
Group1A Group2A Group3A

Group1B Group2B Group3B

2. τi: effect of treatment i, i = 1,…,n; 𝝶j: effect of treatment j, j = 1,…,r



9Fisher’s two-way ANOVA with interaction
Hypothesis to test n.1: 𝝉1 = … = 𝝉n = 0 

R implementation
Step Aim R function
1 We should fit our data to the ANOVA model fitModel = lm(Response ~ Treat𝝉* Treat𝜼, data=dSet)

2 We can get R to produce an ANOVA table anova(fitModel)

Test statistic:

Source of 
variation

Sum of Squares Degrees of freedom Mean Squares Fdf1,df2 p-value

Treatment 𝝉 SSB𝝉 = 𝝨i ui (mi - M)2 df1𝝉 = n - 1 MSB𝝉 = SSB𝝉 / df1𝞃 MSB𝝉 / MSE 0.023
Treatment 𝜼 SSB𝜼 = 𝝨j ui (mj - M)2 df1𝜼 = r - 1 MSB𝜼 = SSB𝜼 / df1𝝶 MSB𝜼 / MSE 0.150
Interaction 𝝉:𝜼 SSB𝝉:𝜼 = 𝝨jj uij (mij - mj - mi + M)2 df1𝝉:𝜼 = (n - 1) ⋅ (r - 1) MSB𝝉:𝜼 SSB𝝉:𝜼 / df1𝝉:𝜼 MSB𝝉:𝜼 / MSE 0.401
Residuals SSE = 𝝨ij 𝝨k (yijk - mij)2 df2 = N - (n ⋅ r) MSE = SSE / df2

Total SST = SSB𝝉 + SSB𝜼+ SSB𝝉:𝜼 + SSE

Note: the ANOVA divides the total variation in the response into parts.

Hypothesis to test n.2: 𝜼1 = … = 𝜼r = 0 Hypothesis to test n.3: 𝝉:𝜼 = 0 



10Diagnostics: residuals

The (raw) residuals are equal 
to the difference between the 
observations and the 
corresponding fitted values.

Fitted value = Treatment 1 mean

Fitted value = Treatment 2 mean

Residual = Observed - Fitted

R implementation
Step Aim R function

1 We should fit our data to the ANOVA model fittedModel = lm(Response ~ Predictor, data=dSet)

2 We want to obtain the residuals of the model dSet$resid = resid(fittedModel)



11Diagnostics: residuals

R implementation
Step Aim Tool R function
1 We should plot the 

residuals
Histogram hist(dSet$resid)

Q-Q plot qqnorm(dSet$resid); qqline(dSet$resid)

2 We could test the 
assumptions 

Shapiro-Wilk normality test shapiro.test(dSet$resid)

Bartlett’s homoscedasticity test bartlett.test(resid ~ Predictor, data = dSet)

Shapiro-Wilk normality test

data:  dSet$resid
W = 0.97324, p-value = 0.3119

Bartlett test of homogeneity of variances

data:  resid by Predictor
Bartlett's K-squared = 1.5374, df = 1, p-value = 0.215

Histogram of dSet$resid

dSet$resid
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12Diagnostics: residuals
Equation of the statistical model:

yijk = μ + τi + 𝜼j + τi:𝜼j + εijk

Assumptions of normality and homoscedasticity must be satisfied by 
residuals of single treatment group and combined treatment groups (e.g. 
pooled residuals of Group1A, Group3A and Group3B).
Pooled residuals should be examined in the diagnostic analysis.



13Source of problems and possible solutions
Solution Normality Unequal variance Outliers

Welch’s one-way ANOVA ✓

Weighting ✓

Distribution-free methods ⨀ ✓ ✓ ✓

Data transformation ✓ ✓ ✓
⨀ e.g. Kruskal-Wallis test (i.e. one-way ANOVA on ranks)
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The Welch version of one-way ANOVA do not assume that all the groups 
are sampled from populations with equal variances.

Welch’s one-way ANOVA

Treatment 
assignment Equation of the statistical model:

yik = μ + τi + εik

Group1 𝝁

Assumptions of Welch’s one-way ANOVA models are the following:
§ The effect of each factor is additive on 𝝁 (i.e. population mean) parameter
§ εik is assumed to be independent of one another and normally distributed with mean = 0. Standard

deviation could be different between groups: σi ≠  σj, i ≠ j.

Group2 Group3

σ1 σ2 σ3 

Hypothesis to test: 𝝉1 = … = 𝝉n = 0 



15Weighted least squares
> library(nlme) # Load the nlme package
> fittedModel = gls(Response ∼ Predictor, weight = varIdent(form= ∼1 | Predictor) , data = dSet) 
     # Modeling variance as function of the predictor
> summary(fittedModel) # Output

Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | gender
 Parameter estimates:
         F          M 
  1.0000000 0.7786179 

Coefficients:
                Value  Std.Error  t-value  p-value
(Intercept) 147.4729  3.725061  39.58938  0.0000
gender M          4.9198   5.097216  0.96519   0.3368

O
ut

pu
t

Note: gls() function fits a linear model using generalized least squares.



16Kruskal-Wallis test
The Kruskal-Wallis test (i.e. one-way ANOVA on ranks) works on ranks. It 
tests whether samples originate from the same distribution.

Assumptions of Kruskal-Wallis test are the following:
§ We only assume that the observations in the data set are independent of one another.

10.2 24.7 33.2 .. 96.4 99.9

1 2 3 .. N-1 N

Replacement of data by 
ranks

Hypothesis to test: D1 = … = Dn



17R functions
R implementation
Test R
Welch’s one-way ANOVA Function • oneway.test(Response ~ Predictor, data = dSet, var.equal = FALSE)

Output One-way analysis of means (not assuming equal variances)

data:  Response and Predictor
F = 118.34, num df = 1.000, denom df = 45.143, p-value = 3.342e-14

Weighted least square Function • fittedModel <- gls(Response ~ Predictor, weights = varIdent(form= ~ 1|Predictor), data = dSet)
• summary(fittedModel)

Output Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Predictor
Parameter estimates:
1               2 
1.000000 1.293192 

Coefficients:
                         Value                  Std.Error          t-value           p-value
(Intercept)         -0.001177          0.1890228        -0.006228      0.9951
Predictor            3.361487          0.3090014        10.878548     0.0000

Kruskal-Wallis Function •  kruskal.test(Response ~ Predictor, data = dSet)

Output Kruskal-Wallis rank sum test

data:  Response by Predictor
Kruskal-Wallis chi-squared = 34.222, df = 1, p-value = 4.917e-09



18Data transformation
We can transform the data mathematically…

§ to make them fit the normality 
     more closely

§ to obtain more similar variances 

§ to handle outliers



19Data transformation
Common and useful transformations of the response variable:
1. the logarithm (yi > 0, i=1,…n)

2. the square root (yi > 0, i=1,…n) 

3. the square power (yi > 0, i=1,…n)

4. the ranks (e.g. Welch’s one-way ANOVA on ranks)



Hands on
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https://bioinformatics-core-shared-training.github.io/ 

Fixed-and-Mixed-effects-models/


