

Together we are beating cancer

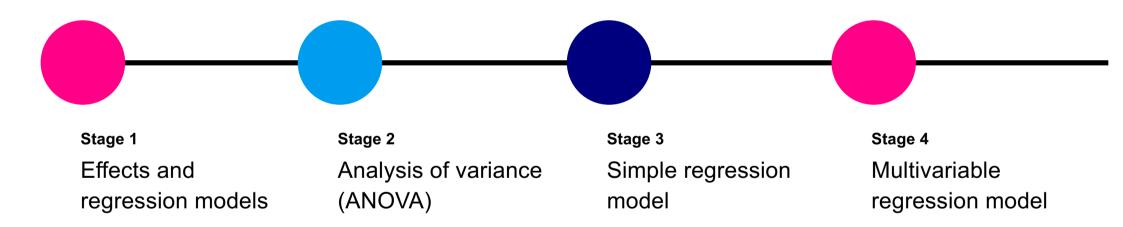
Luca Porcu & Chandra Chilamakuri (Bioinformatics core)

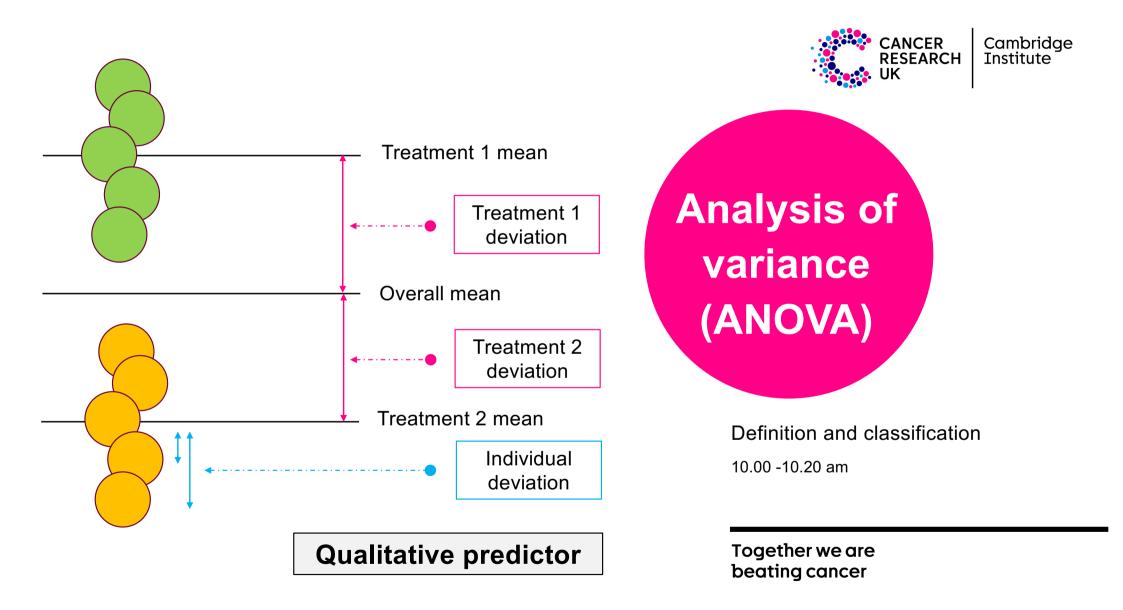
21st February 2025

Linear regression models

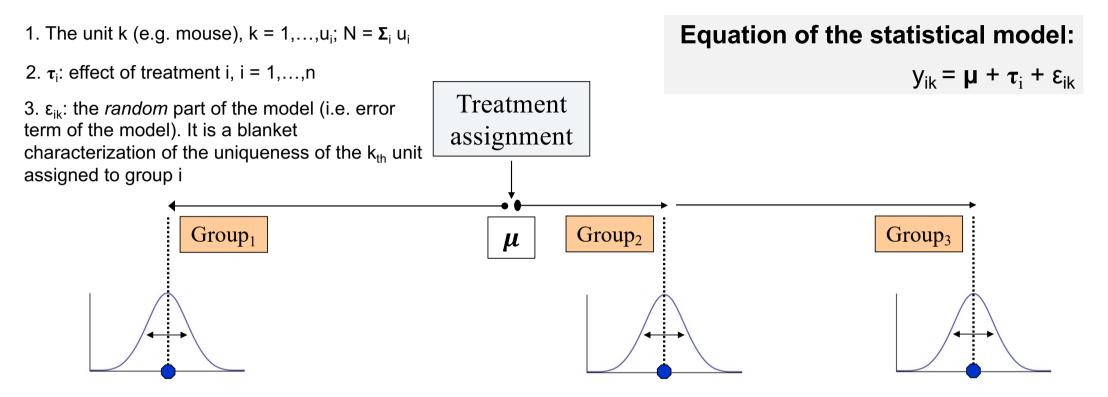
Fixed-effects models

Process flow





Fisher's one-way ANOVA



Assumptions of ANOVA (ANalysis Of VAriance) models are the following:

- The effect of each treatment level i is additive on μ (i.e. population mean) parameter
- ε_{ik} is assumed to be independent of one another and normally distributed with mean = 0 and common standard deviation = σ

Fisher's one-way ANOVA

Hypothesis to test: $\tau_1 = \ldots = \tau_n = 0$

Test statistic:

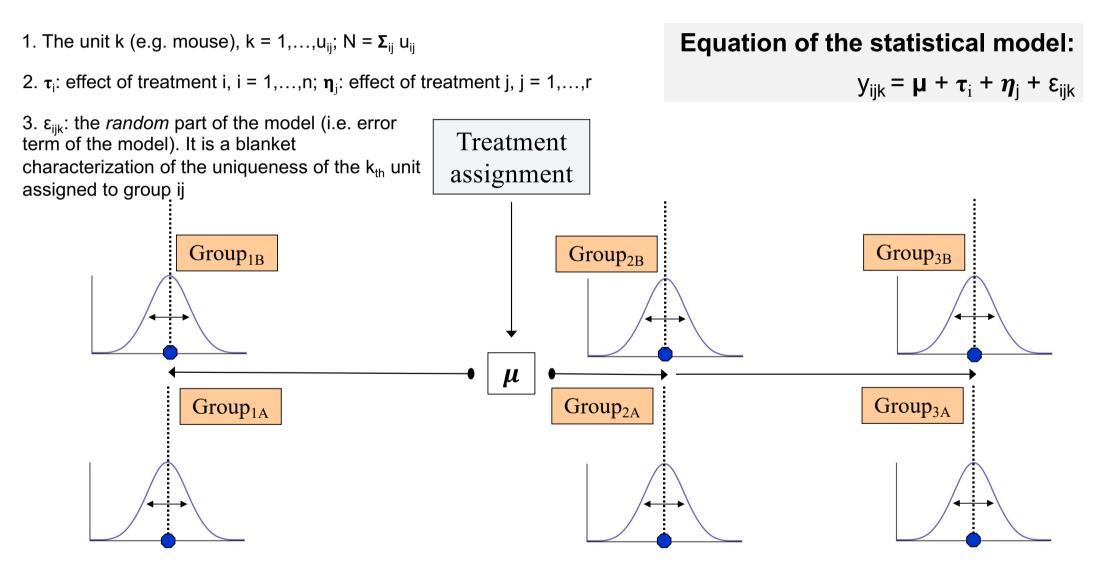
Source of variation	Sum of Squares	Degrees of freedom	Mean Squares	F _{df1,df2}	p-value
Treatment	SSB = $\Sigma_i u_i (m_i - M)^2$	df ₁ = n -1	$MSB = SSB / df_1$	MSB / MSE	0.023
Residuals	SSE = $\boldsymbol{\Sigma}_{i} \boldsymbol{\Sigma}_{k} (y_{ik} - m_{i})^{2}$	df ₂ = N - n	$MSE = SSE / df_2$		
Total	SST = SSB + SSE			-	

Legend: m_i is the sample mean of group i. M is the overall mean response

Note: the ANOVA divides the total variation in the response into parts.

R implen	nentation		
Step	Aim	R function	
1	We should fit our data to the ANOVA model	fitModel = Im(<i>Response ~ Treatment</i> , data= <i>dSet</i>)	
2	We can get R to produce an ANOVA table	anova(fitModel)	

Fisher's two-way ANOVA



Fisher's two-way ANOVA

Hypothesis to test n.1: $\tau_1 = ... = \tau_n = 0$ Hypothesis to test n.2: $\eta_1 = ... = \eta_r = 0$

Test statistic:

Source of variation	Sum of Squares	Degrees of freedom	Mean Squares	F _{df1,df2}	p-value
Treatment $ au$	$SSB_{\tau} = \Sigma_{i} u_{i} (m_{i} - M)^{2}$	df1 ₇ = n - 1	$MSB_{\tau} = SSB_{\tau} / df1_{\tau}$	MSB_{τ} / MSE	0.023
Treatment η	$SSB_{\eta} = \Sigma_{j} u_{i} (m_{j} - M)^{2}$	$df1_{\eta} = r - 1$	$MSB_{\eta} = SSB_{\eta} / df1_{\eta}$	MSB_{η}/MSE	0.150
Residuals	SSE = $\boldsymbol{\Sigma}_{ij} \boldsymbol{\Sigma}_k (y_{ijk} - m_{ij})^2$	$df_2 = N - (n \cdot r)$	$MSE = SSE / df_2$		
Total	$SST = SSB_{\tau} + SSB_{\eta}SSE$			_	

Note: the ANOVA divides the total variation in the response into parts.

R implementation		
Step	Aim	R function
1	We should fit our data to the ANOVA model	fitModel = $Im(Response \sim Treat_{\tau} + Treat_{\eta}, data=dSet)$
2	We can get R to produce an ANOVA table	anova(fitModel)

Fisher's two-way ANOVA with interaction ⁸

Equation of the statistical model: 1. The unit k (e.g. mouse), $k = 1, ..., u_{ii}; N = \Sigma_{ii} u_{ii}$ 2. τ_i : effect of treatment i, i = 1,...,n; η_i : effect of treatment j, j = 1,...,r $y_{ijk} = \mu + \tau_i + \eta_j + \tau_i \cdot \eta_j + \varepsilon_{ijk}$ 3. ε_{iik} : the *random* part of the model (i.e. error Treatment term of the model). It is a blanket characterization of the uniqueness of the k_{th} unit assignment assigned to group ij Group_{1B} Group_{3B} Group_{2B} μ Group_{2A} Group_{1A} Group_{3A}

Fisher's two-way ANOVA with interaction ⁹

Hypothesis to test n.1: $\tau_1 = ... = \tau_n = 0$ Hypothesis to test n.2: $\eta_1 = ... = \eta_r = 0$ Hypothesis to test n.3: $\tau: \eta = 0$

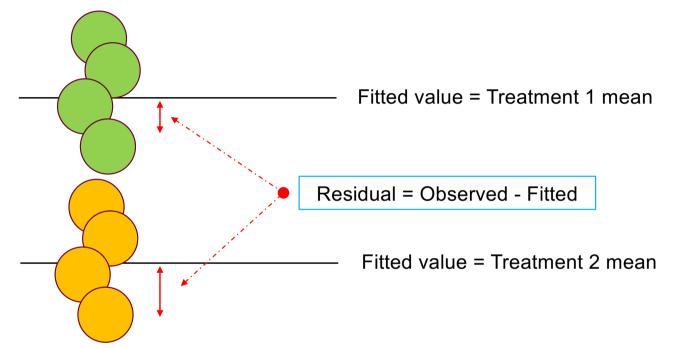
Test statistic:

Source of variation	Sum of Squares	Degrees of freedom	Mean Squares	F _{df1,df2}	p-value
Treatment $ au$	$SSB_{\tau} = \Sigma_i u_i (m_i - M)^2$	df1 ₇ = n - 1	$MSB_{\tau} = SSB_{\tau} / df1_{\tau}$	MSB_{τ}/MSE	0.023
Treatment η	$SSB_{\eta} = \Sigma_j u_i (m_j - M)^2$	$df1_{\eta} = r - 1$	$MSB_{\eta} = SSB_{\eta} / df1_{\eta}$	MSB_{η} / MSE	0.150
Interaction τ : η	$SSB_{\tau:\eta} = \mathbf{\Sigma}_{jj} \mathbf{u}_{ij} (\mathbf{m}_{ij} - \mathbf{m}_j - \mathbf{m}_i + \mathbf{M})^2$	$df1_{\tau:\eta} = (n - 1) \cdot (r - 1)$	$MSB_{\tau:\eta}SSB_{\tau:\eta}/df1_{\tau:\eta}$	$MSB_{\tau:\eta} / MSE$	0.401
Residuals	SSE = $\boldsymbol{\Sigma}_{ij} \boldsymbol{\Sigma}_k (\boldsymbol{y}_{ijk} - \boldsymbol{m}_{ij})^2$	$df_2 = N - (n \cdot r)$	$MSE = SSE / df_2$		
Total	$SST = SSB_{\tau} + SSB_{\eta} + SSB_{\tau:\eta} + SSE$			-	

Note: the ANOVA divides the total variation in the response into parts.

R implementation		
Step	Aim	R function
1	We should fit our data to the ANOVA model	fitModel = $Im(Response \sim Treat_{\tau} * Treat_{\eta}, data=dSet)$
2	We can get R to produce an ANOVA table	anova(fitModel)

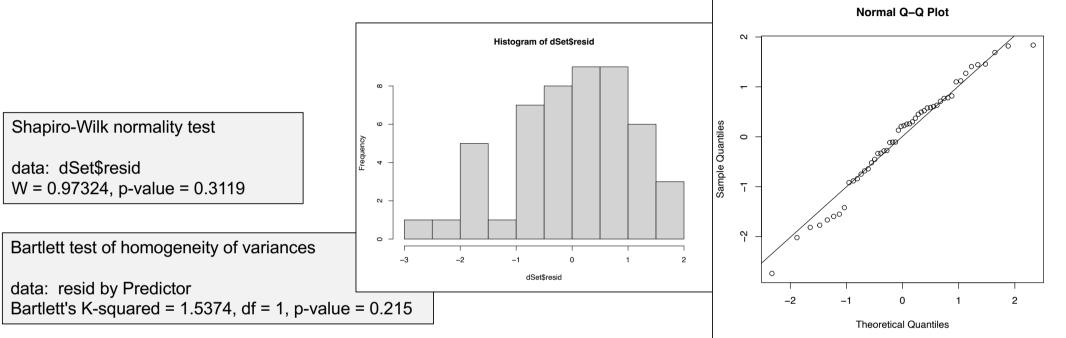
Diagnostics: residuals



The (raw) residuals are equal to the difference between the observations and the corresponding fitted values.

R imp	R implementation					
Step	Aim	R function				
1	We should fit our data to the ANOVA model	fittedModel = Im(<i>Response ~ Predictor</i> , data= <i>dSet</i>)				
2	We want to obtain the residuals of the model	<i>dSet</i> \$resid = resid(fittedModel)				

Diagnostics: residuals



R implementation

Step	Aim	ΤοοΙ	R function
1	We should plot the	Histogram	hist(<i>dSet</i> \$resid)
residuals		Q-Q plot	<pre>qqnorm(dSet\$resid); qqline(dSet\$resid)</pre>
2	We could test the	Shapiro-Wilk normality test	shapiro.test(dSet\$resid)
	assumptions	Bartlett's homoscedasticity test	<pre>bartlett.test(resid ~ Predictor, data = dSet)</pre>

Diagnostics: residuals

Equation of the statistical model:

 $y_{ijk} = \boldsymbol{\mu} + \boldsymbol{\tau}_i + \boldsymbol{\eta}_j + \boldsymbol{\tau}_i : \boldsymbol{\eta}_j + \boldsymbol{\varepsilon}_{ijk}$

Assumptions of normality and homoscedasticity **must be satisfied** by residuals of single treatment group and **combined** treatment groups (e.g. **pooled** residuals of Group_{1A}, Group_{3A} and Group_{3B}). Pooled residuals should be examined in the diagnostic analysis.

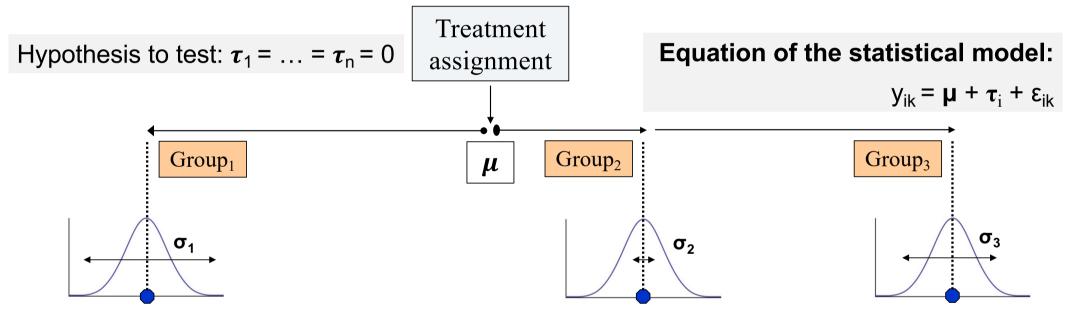
Source of problems and possible solutions ¹³

Solution	Normality	Unequal variance	Outliers
Welch's one-way ANOVA		\checkmark	
Weighting		\checkmark	
Distribution-free methods $^{\odot}$	\checkmark	\checkmark	\checkmark
Data transformation	\checkmark	\checkmark	\checkmark

 $^{\odot}$ e.g. Kruskal-Wallis test (i.e. one-way ANOVA on ranks)

Welch's one-way ANOVA

The Welch version of one-way ANOVA do not assume that all the groups are sampled from populations with equal variances.



Assumptions of Welch's one-way ANOVA models are the following:

- The effect of each factor is additive on μ (i.e. population mean) parameter
- ε_{ik} is assumed to be independent of one another and normally distributed with mean = 0. Standard deviation could be different between groups: σ_i ≠ σ_j, i ≠ j.

Weighted least squares

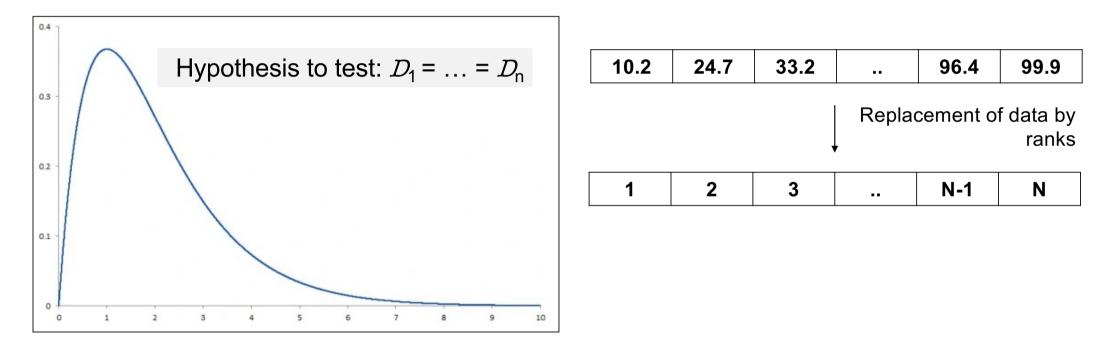
- > library(nlme) # Load the nlme package
- > fittedModel = gls(Response ~ Predictor, weight = varIdent(form= ~1 | Predictor), data = dSet)
 # Modeling variance as function of the predictor
- > summary(fittedModel) # Output

	Variance function Structure: Differ Formula: ~1 ge Parameter estin	ent standard deviat	ions per stratum			
Output	Coefficients:	F 1.0000000	M 0.7786179			
	(Intercept) gender M	Value 147.4729 4.9198	Std.Error 3.725061 5.097216	t-value 39.58938 0.96519	p-value 0.0000 0.3368	

Note: gls() function fits a linear model using generalized least squares.

Kruskal-Wallis test

The Kruskal-Wallis test (i.e. one-way ANOVA on ranks) works on ranks. It tests whether samples originate from the same distribution.



Assumptions of Kruskal-Wallis test are the following:

• We only assume that the observations in the data set are independent of one another.

R functions

R implementation				
Test	R			
Welch's one-way ANOVA	Function	 oneway.test(Response ~ Predictor, data = dSet, var.equal = FALSE) 		
	Output	One-way analysis of means (not assuming equal variances)		
		data: Response and Predictor F = 118.34, num df = 1.000, denom df = 45.143, p-value = 3.342e-14		
Weighted least square	Function	 fittedModel <- gls(<i>Response</i> ~ <i>Predictor</i>, weights = varIdent(form= ~ 1 <i>Predictor</i>), data = <i>dSet</i>) summary(fittedModel) 		
	Output	Variance function: Structure: Different standard deviations per stratum Formula: ~1 Predictor Parameter estimates: 1 2 1.000000 1.293192		
		Value Std.Error t-value p-value (Intercept) -0.001177 0.1890228 -0.006228 0.9951 Predictor 3.361487 0.3090014 10.878548 0.0000		
Kruskal-Wallis	Function	 kruskal.test(Response ~ Predictor, data = dSet) 		
	Output	Kruskal-Wallis rank sum test data: Response by Predictor Kruskal-Wallis chi-squared = 34.222, df = 1, p-value = 4.917e-09		

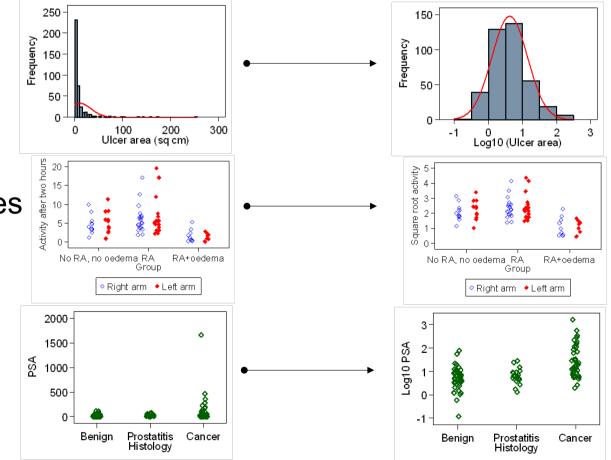
Data transformation

We can transform the data mathematically...

 to make them fit the normality more closely

to obtain more similar variances

to handle outliers



Data transformation

Common and useful transformations of the response variable:

- 1. the logarithm $(y_i > 0, i=1,...n)$
- 2. the square root $(y_i \ge 0, i=1,...n)$
- 3. the square power ($y_i \ge 0$, i=1,...n)
- 4. the ranks (e.g. Welch's one-way ANOVA on ranks)

https://bioinformatics-core-shared-training.github.io/ Fixed-and-Mixed-effects-models/

