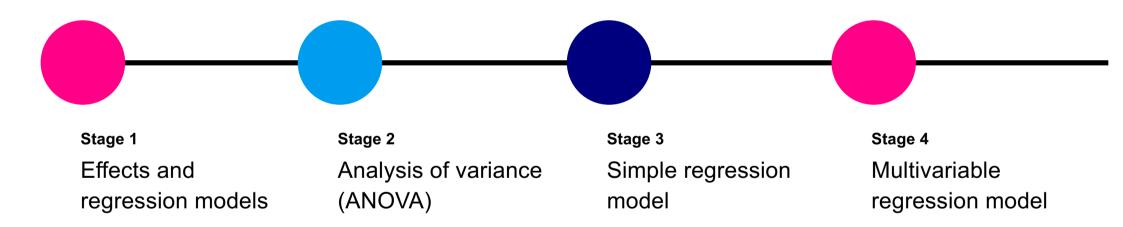
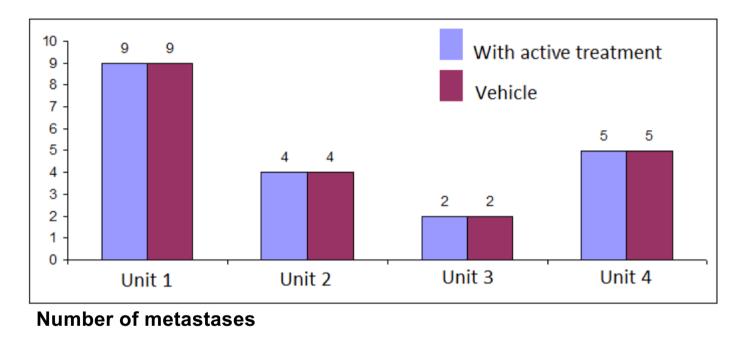


Together we are beating cancer

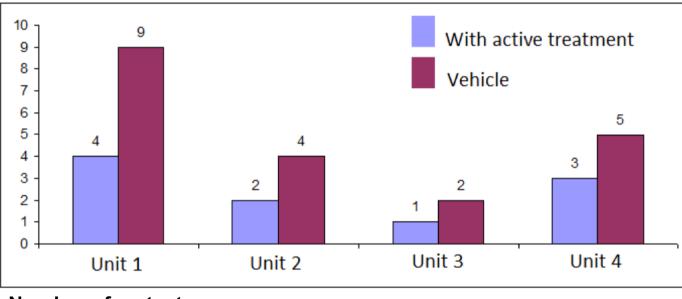

Luca Porcu & Chandra Chilamakuri (Bioinformatics core)

21st February 2025

Linear regression models


Fixed-effects models

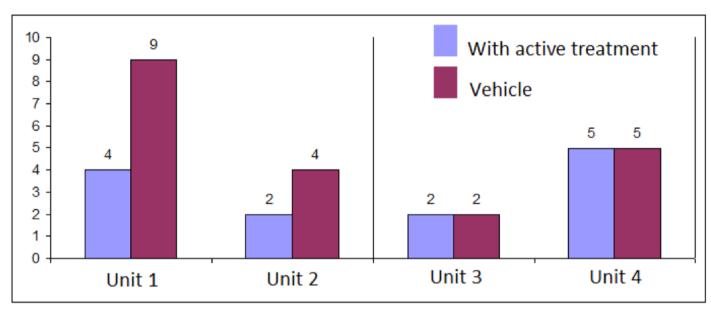
Process flow


Definition

Each unit exhibits a **response** that is observed some time after **exposure (treatment)**.

Definition of "no effect": each unit would exhibit the same value of the response whether assigned to exposure or not. If changing the exposure assigned to a unit changed the unit's response then the exposure has at least some effect.

Examples of effects

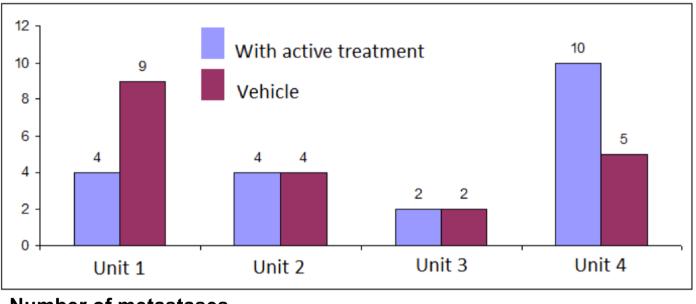


Number of metastases

- N° of metastases in the treated group: 10
- N° of metastases in the vehicle: 20

This effect is understandable, easily detectable and systematic

Examples of effects



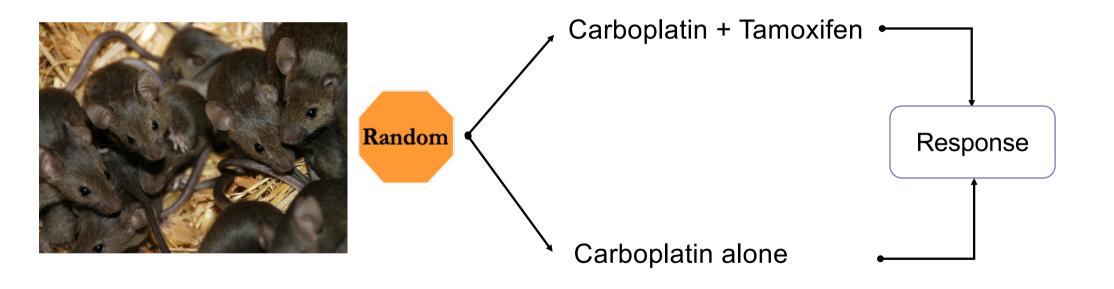
Number of metastases

Experimental group	Male mice	Female mice
Active	6	7
Vehicle	13	7

This effect is understandable, detectable with sufficient units and systematic

Examples of effects

7


Number of metastases

- N° of metastases in the treated group: 20
- N° of metastases in the vehicle: 20

This effect can someday be understood, not easily detectable and unsystematic

Different sources of effects

Treatment

Different sources of effects

Environment and features of experimental units

Temperature, humidity, season, barometric pressure, lunar cycle, noise, air movement, light, smells, room characteristics, cage size and design, bedding material, nest box design, nest materials, number of animals in group, water quality, diet type, diet availability, diet quality, frequency and duration of handling

Species, sex, strain, genotype, health status, batch, supplier, age, body weight, litter size, oestrus stage of females, level of interanimal aggression

Different sources of effects

The operator

- Calibration of instruments
- Measurement errors
- Recording errors
- Preparation of test materials
- Operative procedures

Classification of effects

Fixed effects

Effects attributable to a finite set of levels of a source (i.e. *predictor* in statistical terms) that occur in the data and which are there because we are interested in them. Fixed effects are **parameters** associated with an entire **population**.

Treatment Sex

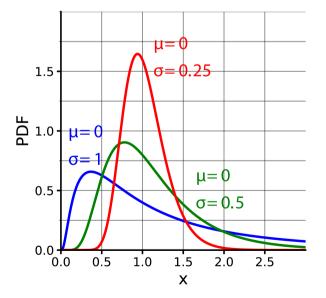
Genotype

Time

Classification of effects

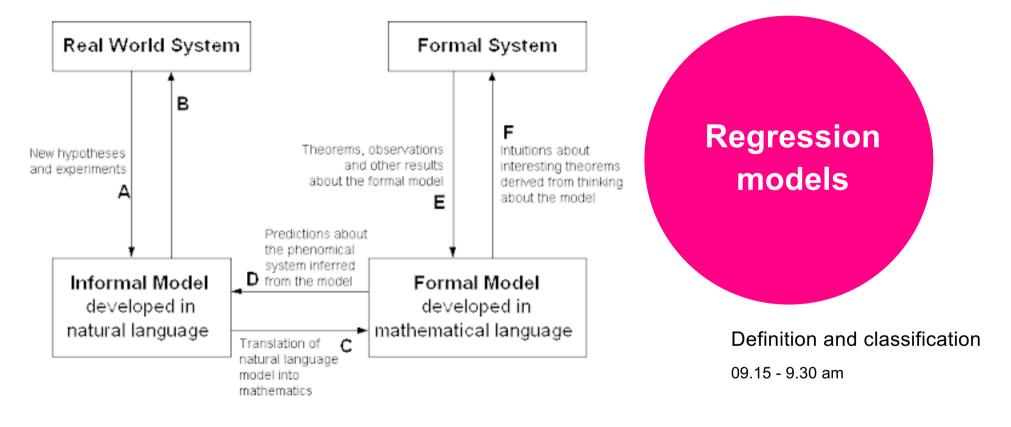
Random effects

Effects attributable to a (usually) infinite set of levels of a source (i.e. *predictor*), of which only a **random sample** are deemed to occur in the data. Random effects are associated with **individual observational units** drawn at random from a population.


Classification of effects

Unpredictable effect (i.e. error)

Unpredictable effect attributable to "hidden" sources whose consequence is the deviation of the observed value from the "true value" of the population (i.e. fixed effects) or the individual observational unit (i.e. random effects).



At any given combination of age, gender, height, smoking status and place of residence, many different values of FEV (lung capacity) could be recorded, and so produce a distribution of recorded FEV values. At this given combination of age, gender, height, smoking status and place of residence, the distribution of FEV values has a unique mean FEV ("the true value").

Together we are beating cancer

Definition

A regression model describes mathematically the population distribution of the **response** (e.g. FEV distribution in UK) **as a function** of **fixed effects** (e.g. age, gender, height, smoking status), **random effects** (e.g. place of residence) and *error*.

$$y_i = f(x_{1,i},...,x_{n,i}; x_{n+1,i},..., x_{n+k,i}; \varepsilon_i)$$

where i is the observational unit of the population.

Hi, my name is Mark Brown. I am 35 years old, male, 1.75 meters tall and ex-smoker. I live in Cambridge, UK. *This morning* my FEV is 4.73 liters in 1 second.

Definition

Every regression model consists of two components.

Component	Meaning	Example	
Systematic component	It describes the relationship between the predictors and the population parameter of interest (e.g. mean)	$\mu = \beta_0 + \beta_1 x_1 + + \beta_n x_{n,}$ where $x_1,,x_n$ could be fixed and random predictors	
Random It describes the properties of components random effects and <i>error</i>	Random effects are normally distributed	N (μ_{random} = 0, σ_{random})	
	Error is normally distributed	N (μ_{error} = 0, σ_{error})	
		Error variance is constant	σ_{error}^{2} = constant

Examples of regression models

Model	Component	Structure
1	Systematic	$\boldsymbol{\mu}(\mathbf{Y}) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{x}_1 + \dots + \boldsymbol{\beta}_n \mathbf{x}_n$
	Random	Random effects and error are normally distributed. Random and error variances are constant.
2	Systematic	$\log [\mu (Y)] = \beta_0 + \beta_1 x_1 + + \beta_n x_n$
	Random	Random effects and error are log-normal distributed. Random and error variances on log scale are constant.
3	Systematic	Median (Y) = β_0 + exp($\beta_1 x_1$) + + exp($\beta_n x_n$)
	Random	Random effects are normally distributed. Random variances are constant.
		Error is exponentially distributed. Random variances are constant.

Legend: Y = response; $x_1, ..., x_n$ = fixed and random effects; exp = exponential function; $\beta_0, \beta_1, ..., \beta_n$ = coefficients (i.e. parameters) of the regression model to estimate

Assumptions of linear regression models ¹⁸

Component	Assumption	Meaning	
Systematic component	Population mean	We are interested to describe the population mean on natural scale	μ
	Linearity	The coefficients are assumed to combine the effects of the predictors linearly	$\boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{x}_i + \dots + \boldsymbol{\beta}_n \mathbf{x}_i$
Random components	Random effects	They are normally distributed	Ν (0, <i>σ</i> _{random})
	Error	Error is normally distributed	Ν (0, <i>σ</i> _{error})
		Error variance is constant	σ_{error}^{2} = constant

Linear fixed-effects and mixed-effects models 19

A linear model that incorporate only fixed effects is called linear fixed-effects model (or merely **linear model**).

A linear model that incorporate both fixed and random effects is called **linear mixed-effects model**.

https://bioinformatics-core-shared-training.github.io/ Fixed-and-Mixed-effects-models/

