The in-built dataset trees
contains data pertaining to
the Volume
, Girth
and Height
of
31 felled black cherry trees. In the Simple Regression session, we
constructed a simple linear model for Volume
using
Girth
as the independent variable. Now we will expand this
by considering Height
as another predictor.
Start by plotting the dataset:
This plots all variables against each other, enabling visual information about correlations within the dataset.
Re-create the original model of Volume
against
Girth
:
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
Now include Height
as an additional variable:
##
## Call:
## lm(formula = Volume ~ Girth + Height, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.4065 -2.6493 -0.2876 2.2003 8.4847
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
## Girth 4.7082 0.2643 17.816 < 2e-16 ***
## Height 0.3393 0.1302 2.607 0.0145 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.882 on 28 degrees of freedom
## Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
## F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
Note that the R^2 has improved, yet the Height
term is
less significant than the other two parameters.
Try including the interaction term between Girth
and
Height
:
##
## Call:
## lm(formula = Volume ~ Girth * Height, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5821 -1.0673 0.3026 1.5641 4.6649
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 69.39632 23.83575 2.911 0.00713 **
## Girth -5.85585 1.92134 -3.048 0.00511 **
## Height -1.29708 0.30984 -4.186 0.00027 ***
## Girth:Height 0.13465 0.02438 5.524 7.48e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.709 on 27 degrees of freedom
## Multiple R-squared: 0.9756, Adjusted R-squared: 0.9728
## F-statistic: 359.3 on 3 and 27 DF, p-value: < 2.2e-16
All terms are highly significant. Note that the Height
is more significant than in the previous model, despite the introduction
of an additional parameter.
We’ll now try a different functional form - rather than looking for an additive model, we can explore a multiplicative model by applying a log-log transformation (leaving out the interaction term for now).
##
## Call:
## lm(formula = log(Volume) ~ log(Girth) + log(Height), data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.168561 -0.048488 0.002431 0.063637 0.129223
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.63162 0.79979 -8.292 5.06e-09 ***
## log(Girth) 1.98265 0.07501 26.432 < 2e-16 ***
## log(Height) 1.11712 0.20444 5.464 7.81e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08139 on 28 degrees of freedom
## Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761
## F-statistic: 613.2 on 2 and 28 DF, p-value: < 2.2e-16
All terms are significant. Note that the residual standard error is much lower than for the previous models. However, this value cannot be compared with the previous models due to transforming the response variable. The R^2 value has increased further, despite reducing the number of parameters from four to three.
## 2.5 % 97.5 %
## (Intercept) -8.269912 -4.993322
## log(Girth) 1.828998 2.136302
## log(Height) 0.698353 1.535894
Looking at the confidence intervals for the parameters reveals that
the estimated power of Girth
is around 2, and
Height
around 1. This makes a lot of sense, given the
well-known dimensional relationship between Volume
,
Girth
and Height
!
For completeness, we’ll now add the interaction term.
##
## Call:
## lm(formula = log(Volume) ~ log(Girth) * log(Height), data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.165941 -0.048613 0.006384 0.062204 0.132295
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.6869 7.6996 -0.479 0.636
## log(Girth) 0.7942 3.0910 0.257 0.799
## log(Height) 0.4377 1.7788 0.246 0.808
## log(Girth):log(Height) 0.2740 0.7124 0.385 0.704
##
## Residual standard error: 0.08265 on 27 degrees of freedom
## Multiple R-squared: 0.9778, Adjusted R-squared: 0.9753
## F-statistic: 396.4 on 3 and 27 DF, p-value: < 2.2e-16
The R^2 value has increased (of course, as all we’ve done is add an additional parameter), but interestingly none of the four terms are significant. This means that none of the individual terms alone are vital for the model - there is duplication of information between the variables. So we will revert back to the previous model.
Given that it would be reasonable to expect the power of
Girth
to be 2, and Height to be 1, we will now fix those
parameters, and instead just estimate the one remaining parameter.
##
## Call:
## lm(formula = log(Volume) - log((Girth^2) * Height) ~ 1, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.168446 -0.047355 -0.003518 0.066308 0.136467
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.16917 0.01421 -434.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0791 on 30 degrees of freedom
Note that there is no R^2 (as only the intercept was included in the model), and that the Residual Standard Error is incomparable with previous models due to changing the response variable.
We can alternatively construct a model with the response being y, and the error term additive rather than multiplicative.
##
## Call:
## lm(formula = Volume ~ 0 + I(Girth^2):Height, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6696 -1.0832 -0.3341 1.6045 4.2944
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## I(Girth^2):Height 2.108e-03 2.722e-05 77.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.455 on 30 degrees of freedom
## Multiple R-squared: 0.995, Adjusted R-squared: 0.9949
## F-statistic: 5996 on 1 and 30 DF, p-value: < 2.2e-16
Note that the parameter estimates for the last two models are slightly different… this is due to differences in the error model.
Of the last two models, the one with the log-Normal error model would
seem to have the more Normal residuals. This can be inspected by looking
at diagnostic plots, by and using the shapiro.test()
:
fitted = fitted(m6)
resid = resid(m6)
plot(fitted, resid, xlab="Fitted values", ylab="Raw residuals")
fitted = fitted(m7)
resid = resid(m7)
plot(fitted, resid, xlab="Fitted values", ylab="Raw residuals")
##
## Shapiro-Wilk normality test
##
## data: residuals(m6)
## W = 0.97013, p-value = 0.5225
##
## Shapiro-Wilk normality test
##
## data: residuals(m7)
## W = 0.95846, p-value = 0.2655
The Akaike Information Criterion (AIC) can help to make decisions regarding which model is the most appropriate. Now calculate the AIC for each of the above models:
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
## [1] 181.6447
##
## Call:
## lm(formula = Volume ~ Girth + Height, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.4065 -2.6493 -0.2876 2.2003 8.4847
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
## Girth 4.7082 0.2643 17.816 < 2e-16 ***
## Height 0.3393 0.1302 2.607 0.0145 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.882 on 28 degrees of freedom
## Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
## F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
## [1] 176.91
##
## Call:
## lm(formula = Volume ~ Girth * Height, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5821 -1.0673 0.3026 1.5641 4.6649
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 69.39632 23.83575 2.911 0.00713 **
## Girth -5.85585 1.92134 -3.048 0.00511 **
## Height -1.29708 0.30984 -4.186 0.00027 ***
## Girth:Height 0.13465 0.02438 5.524 7.48e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.709 on 27 degrees of freedom
## Multiple R-squared: 0.9756, Adjusted R-squared: 0.9728
## F-statistic: 359.3 on 3 and 27 DF, p-value: < 2.2e-16
## [1] 155.4692
##
## Call:
## lm(formula = log(Volume) ~ log(Girth) + log(Height), data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.168561 -0.048488 0.002431 0.063637 0.129223
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.63162 0.79979 -8.292 5.06e-09 ***
## log(Girth) 1.98265 0.07501 26.432 < 2e-16 ***
## log(Height) 1.11712 0.20444 5.464 7.81e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08139 on 28 degrees of freedom
## Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761
## F-statistic: 613.2 on 2 and 28 DF, p-value: < 2.2e-16
## [1] -62.71125
##
## Call:
## lm(formula = log(Volume) ~ log(Girth) * log(Height), data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.165941 -0.048613 0.006384 0.062204 0.132295
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.6869 7.6996 -0.479 0.636
## log(Girth) 0.7942 3.0910 0.257 0.799
## log(Height) 0.4377 1.7788 0.246 0.808
## log(Girth):log(Height) 0.2740 0.7124 0.385 0.704
##
## Residual standard error: 0.08265 on 27 degrees of freedom
## Multiple R-squared: 0.9778, Adjusted R-squared: 0.9753
## F-statistic: 396.4 on 3 and 27 DF, p-value: < 2.2e-16
## [1] -60.88061
##
## Call:
## lm(formula = log(Volume) - log((Girth^2) * Height) ~ 1, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.168446 -0.047355 -0.003518 0.066308 0.136467
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.16917 0.01421 -434.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0791 on 30 degrees of freedom
## [1] -66.34198
##
## Call:
## lm(formula = Volume ~ 0 + I(Girth^2):Height, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6696 -1.0832 -0.3341 1.6045 4.2944
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## I(Girth^2):Height 2.108e-03 2.722e-05 77.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.455 on 30 degrees of freedom
## Multiple R-squared: 0.995, Adjusted R-squared: 0.9949
## F-statistic: 5996 on 1 and 30 DF, p-value: < 2.2e-16
## [1] 146.6447
Whilst the AIC can help differentiate between similar models, it cannot help deciding between models that have different responses. Which model would you select as the most appropriate?
The in-built R dataset Puromycin
contains data regarding
the reaction velocity versus substrate concentration in an enzymatic
reaction involving untreated cells or cells treated with Puromycin.
conc
(concentration) against rate
.
What is the nature of the relationship between conc
and
rate
?m10 = lm(log(conc)~rate,data=Puromycin)
fitted = fitted(m10)
resid = resid(m10)
plot(fitted, resid, xlab="Fitted values", ylab="Raw residuals")
##
## Call:
## lm(formula = log(conc) ~ rate, data = Puromycin)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.66740 -0.37570 -0.00859 0.25076 1.12635
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.247389 0.293626 -17.87 3.52e-14 ***
## rate 0.026352 0.002174 12.12 6.04e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4845 on 21 degrees of freedom
## Multiple R-squared: 0.875, Adjusted R-squared: 0.869
## F-statistic: 146.9 on 1 and 21 DF, p-value: 6.039e-11
state
term to the model. What type of variable
is this? Is the inclusion of this term appropriate?m11 = lm(log(conc)~rate+state,data=Puromycin)
fitted = fitted(m11)
resid = resid(m11)
plot(fitted, resid, xlab="Fitted values", ylab="Raw residuals")
##
## Call:
## lm(formula = log(conc) ~ rate + state, data = Puromycin)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6516 -0.1915 0.0066 0.1544 0.6669
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.915289 0.248309 -23.822 3.74e-16 ***
## rate 0.028912 0.001612 17.936 8.55e-14 ***
## stateuntreated 0.717807 0.149953 4.787 0.000112 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3389 on 20 degrees of freedom
## Multiple R-squared: 0.9417, Adjusted R-squared: 0.9359
## F-statistic: 161.6 on 2 and 20 DF, p-value: 4.515e-13
# `state` is a boolean factor or indicator variable
# The inclusion of `state` is appropriate, as the term is significant and the diagnostic plots look reasonable
rate
and state
. Are all terms significant?
What can you conclude?##
## Call:
## lm(formula = log(conc) ~ rate * state, data = Puromycin)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.38444 -0.25402 0.03685 0.21395 0.39790
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.504198 0.235291 -23.393 1.81e-15 ***
## rate 0.026008 0.001565 16.624 8.91e-13 ***
## stateuntreated -0.436875 0.362822 -1.204 0.24334
## rate:stateuntreated 0.009619 0.002848 3.378 0.00316 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2748 on 19 degrees of freedom
## Multiple R-squared: 0.9636, Adjusted R-squared: 0.9578
## F-statistic: 167.6 on 3 and 19 DF, p-value: 7.622e-14
# The `state` term is not significant when the interaction between `rate` and `state` is included in the model. So it may be better to remove the `state` term from the model.
conc
. Regenerate the
plot of conc
against rate
. Draw curves
corresponding to the fitted values of the final model onto this plot
(note that two separate curves should be drawn, corresponding to the two
levels of state
).##
## Call:
## lm(formula = log(conc) ~ rate + rate:state, data = Puromycin)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.47172 -0.20654 0.01401 0.17728 0.49947
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.6879279 0.1811094 -31.406 < 2e-16 ***
## rate 0.0271582 0.0012530 21.675 2.31e-15 ***
## rate:stateuntreated 0.0063885 0.0009651 6.619 1.91e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2779 on 20 degrees of freedom
## Multiple R-squared: 0.9608, Adjusted R-squared: 0.9569
## F-statistic: 245.2 on 2 and 20 DF, p-value: 8.539e-15
# Solution one:
plot(conc~rate,data=Puromycin)
idx = order(Puromycin$rate)
treated = Puromycin$state[idx] == "treated"
untreated = Puromycin$state[idx] == "untreated"
lines(exp(fitted(m13))[idx][treated]~Puromycin$rate[idx][treated])
lines(exp(fitted(m13))[idx][untreated]~Puromycin$rate[idx][untreated],col="red")
# Solution two (better - more general):
plot(conc~rate,data=Puromycin)
xvals = range(Puromycin$rate)[1]:range(Puromycin$rate)[2]
lines(exp(coef(m13)[1] + coef(m13)[2]*xvals) ~ xvals)
lines(exp(coef(m13)[1] + coef(m13)[2]*xvals + coef(m13)[3]*xvals) ~ xvals, col="red")