Statistical Models for sequencing data: from Experimental Design to Generalized Linear Models

Oscar M. Rueda
Breast Cancer Functional Genomics Group.
잢․ CAMBRIDGE CRUK Cambridge Research Institute (a.k.a. Li Ka Shing Centre)
㭋 Oscar.Rueda@cruk.cam.ac.uk

Outline

- Experimental Design
- Design and Contrast matrices
- Generalized linear models
- Models for counting data

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of.

> Sir Ronald Fisher (1890-1962)
[evolutionary biologist, geneticist and statistician]

An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem.

John Tukey (1915-2000)
[Statistician]

An unsophisticated forecaster uses

 statistics as a drunken man uses lamp-posts - for support rather than for illumination.

Andrew Lang (1844-1912)

[Poet, novelist and literary critic]

Experimental Design

Design of an experiment

- Select biological questions of interest
- Identify an appropriate measure to answer that question
- Select additional variables or factors that can have an influence in the result of the experiment
- Select a sample size and the sample units
- Assign samples to lanes/flow cells.

Principles of Statistical Design of Experiments

- R. A. Fisher:
- Replication
- Blocking
- Randomization.
- They have been used in microarray studies from the beginning.
- Bar coding makes easy to adapt them to NGS studies.

Unreplicated Data

Inferences for RNA and fragment-level can be obtained through Fisher's test. But they don't reflect biological variability.

Replicated Data

1	2	3	4	5	6	7	8
Flow-cell 2							
T_{12}	T_{22}	T_{32}	T_{42}	ΦX	T_{52}	T_{62}	T_{72}

Inferences for treatment effect using generalized linear models (more on this later).

1	2	3	4	5	6	7	8	
Flow-cell 3								
T_{13}	T_{23}	T_{33}	T_{43}	ΦX	T_{53}	T_{63}	T_{73}	

Is this a good design?
We should
randomize within block!

Balanced Block Designs

- Avoids confounding effects:
- Lane effects (any errors from the point where the sample is input to the flow cell until the data output). Examples: systematically bad sequencing cycles, errors in base calling...
- Batch effects (any errors after random fragmentation of the RNA until it is input to the flow cell). Examples: PCR amplification, reverse transcription artifacts...
- Other effects non related to treatment.

Balanced blocks by multiplexing

Balanced Blocked Design

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6

Confounded Design

Auer and Doerge. Genetics 185:405-4I6(2010)

Benefits of a proper design

- NGS is benefited with design principles
- Technical replicates can not replace biological replicates
- It is possible to avoid multiplexing with enough biological replicates and sequencing lanes
- The advantages of multiplexing are bigger than the disadvantages (cost, loss of sequencing depth, bar-code bias...)

Design and contrast matrices

Statistical models

- We want to model the expected result of an outcome (dependent variable) under given values of other variables (independent variables)

Arbitrary function (any shape)

Expected value of variable Y

$$
\begin{aligned}
& E(Y)=f(X) \\
& Y=f(X)+\varepsilon
\end{aligned}
$$

A set of k
independent variables
(also called factors)
This is the
variability around the expected mean of y

Design matrix

- Represents the independent variables that have an influence in the response variable, but also the way we have coded the information and the design of the experiment.
- For now, let's restrict to models

Types of designs considered

- Models with 1 factor
- Models with two treatments
- Models with several treatments
- Models with 2 factors
- Interactions
- Paired designs
- Models with categorical and continuous factors
- TimeCourse Experiments
- Multifactorial models.

Strategy

- Define our set of samples
- Define the factors, type of factors (continuous, categorical), number of levels...
- Define the set of parameters: the effects we want to estimate
- Build the design matrix, that relates the information that each sample contains about the parameters.
- Estimate the parameters of the model: testing
- Further estimation (and testing): contrast matrices.

Models with 1 factor, 2 levels

Sample	Treatment
Sample1	Treatment A
Sample 2	Control
Sample 3	Treatment A
Sample 4	Control
Sample 5	Treatment A
Sample 6	Control

Number of samples: 6
Number of factors: 1
Treatment: Number of levels: 2
Possible parameters (What differences are important)?

- Effect of Treatment A
- Effect of Control

Design matrix for models with 1 factor, 2

Sample	Treatment
Sample1	Treatment A
Sample 2	Control
Sample 3	Treatment A
Sample 4	Control
Sample 5	Treatment A
Sample 6	Control

levels

Control
Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6

S 3

S 5

S 6\end{array}\right]=\)

Design matrix for models with 1 factor, 2

Sample	Treatment
Sample1	Treatment A
Sample 2	Control
Sample 3	Treatment A
Sample 4	Control
Sample 5	Treatment A
Sample 6	Control

Parameters (coefficients, levels of the variable)

Design Matrix

Intercepts

Different parameterization: using intercept

Sample	Treatment
Sample1	Treatment A
Sample 2	Control
Sample 3	Treatment A
Sample 4	Control
Sample 5	Treatment A
Sample 6	Control

Let's now consider this parameterization:
C= Baseline expression
$T_{A}=$ Baseline expression + effect of treatment

So the set of parameters are:
$\mathrm{C}=$ Control (mean expression of the control) $a=T_{A}-$ Control (mean change in expression under treatment

Intercept

Different parameterization: using intercept

Contrast matrices

Are the two parameterizations equivalent?

$$
\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
\hat{T} \\
\hat{C}
\end{array}\right]=\widehat{T-C}
$$

Models with 1 factor, more than 2 levels

Sample	Treatment
Sample1	Treatment A
Sample 2	Treatment B
Sample 3	Control
Sample 4	Treatment A
Sample 5	Treatment B
Sample 6	Control

Number of samples: 6
Number of factors: 1
Treatment: Number of levels: 3
Possible parameters (What differences are important)?

- Effect of Treatment A
- Effect of Treatment B
- Effect of Control
- Differences between treatments?

Design matrix for ANOVA models

Sample	Treatment
Sample1	Treatment A
Sample 2	Treatment B
Sample 3	Control
Sample 4	Treatment A
Sample 5	Treatment B
Sample 6	Control

$\left[\begin{array}{l}S 1 \\ S 2 \\ S 3 \\ S 4 \\ S 5 \\ S 6\end{array}\right]=\left(\left[\begin{array}{l}T_{A} \\ T_{B} \\ C\end{array}\right]\right.$
$\left[\begin{array}{l}S 1 \\ S 2 \\ S 4 \\ S 5 \\ S 6\end{array}\right]=\left(\left[\begin{array}{l}\beta_{0} \\ a \\ b \\ 26\end{array}\right]\right.$

Design matrix for ANOVA models

Baseline levels

The model with intercept always take one level as a baseline:

The baseline is treatment A, the coefficients are comparisons against it!

By default, R uses the first level as baseline
\(\left[$$
\begin{array}{l}S 1 \\
S 2 \\
S 3 \\
S 4 \\
S 5 \\
S 6\end{array}
$$\right]=\left($$
\begin{array}{lll}1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1\end{array}
$$\right)\left[\begin{array}{c}\beta_{0}

b

c

\end{array}\right] \quad\)| By default, R uses the |
| :--- |
| first level as baseline |

R code

R code:

> Treatment <- rep(c("TreatmentA", "TreatmentB", "Control"), 2)
$>$ design.matrix <- model.matrix(~ Treatment) (model with intercept)
$>$ design.matrix <- model.matrix(~ -1 + Treatment) (model without intercept)
> design.matrix <- model.matrix(~ 0 + Treatment) (model without intercept)

Exercise

Build contrast matrices for all pairwise comparisons for this design:

$$
\left[\begin{array}{l}
S 1 \\
S 2 \\
S 3 \\
S 4 \\
S 5 \\
S 6
\end{array}\right]=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left[\begin{array}{c}
T_{A} \\
T_{B} \\
C
\end{array}\right]
$$

Exercise

Build contrast matrices for all pairwise comparisons for these designs:

$$
\left[\begin{array}{c}
S 1 \\
S 2 \\
S 3 \\
S 4 \\
S 5 \\
S 6
\end{array}\right]=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left[\begin{array}{c}
T_{A} \\
T_{B} \\
C
\end{array}\right] \quad\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
1 & -1 & 0
\end{array}\right)\left[\begin{array}{c}
\hat{T}_{A} \\
\hat{T}_{B} \\
\hat{C}
\end{array}\right]
$$

Exercise

Build contrast matrices for all pairwise comparisons for these designs:
$\left[\begin{array}{l}S 1 \\ S 2 \\ S 3 \\ S 4 \\ S 5 \\ S 6\end{array}\right]=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right)\left[\begin{array}{c}\beta_{0} \\ a \\ b\end{array}\right]$

Exercise

Build contrast matrices for all pairwise comparisons for these designs:
$\left[\begin{array}{l}S 1 \\ S 2 \\ S 3 \\ S 4 \\ S 5 \\ S 6\end{array}\right]=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right)\left[\begin{array}{c}\beta_{0} \\ a \\ b\end{array}\right]$
$\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -1\end{array}\right)\left[\begin{array}{c}\hat{\beta}_{0} \\ \hat{a} \\ \hat{b}\end{array}\right]$

Models with 2 factors

Sample	Treatment	ER status
Sample1	Treatment A	+
Sample 2	No Treatment	+
Sample 3	Treatment A	+
Sample 4	No Treatment	+
Sample 5	Treatment A	-
Sample 6	No Treatment	-
Sample 7	Treatment A	-
Sample 8	No Treatment	-
Sumber 0f		

Number of samples: 8
Number of factors: 2
Treatment: Number of levels: 2
ER: Number of levels: 2

Understanding Interactions

Treat \times ER positive interaction

Treat x ER negative interaction

	No Treat	Treat A
ER -	S6, S8	S5, S7
ER +	S2, S4	S1, S3

Models with 2 factors and no interaction

Model with no interaction: only main effects

Number of coefficients (parameters):
Intercept + (\# levels Treat -1) + (\# levels ER -1) = 3

If we remove the intercept, the additional parameter comes from the missing level in one of the variables, but in models with more than 1 factor it is a good idea to keep the intercept.

Models with 2 factors (no interaction)

R code: >design.matrix <- model.matrix(\sim Treatment+ER) (model with intercept)

Models with 2 factors (no interaction)

R code: > design.matrix <- model.matrix(\sim Treatment+ER) (model with intercept)

$$
\left[\begin{array}{l}
S 1 \\
S 2 \\
S 3 \\
S 4 \\
S 5 \\
S 6 \\
S 7 \\
S 8
\end{array}\right]=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left[\begin{array}{c}
\\
\beta_{0} \\
a \\
e r+
\end{array}\right]
$$

	No Treat	Treat A
ER -	S6, S8	S5, S7
ER +	S2, S4	S1, S3

Models with 2 factors and interaction

Model with interaction: main effects + interaction

Number of coefficients (parameters):
Intercept + (\# levels Treat -1) + (\#levels ER -1) +
((\#levels Treat -1) * (\# levels ER -1)) = 4

Models with 2 factors (interaction)

R code: > design.matrix <- model.matrix(\sim Treatment*ER) (model with intercept)

Models with 2 factors (interaction)

R code: > design.matrix <- model.matrix(\sim Treatment*ER) (model with intercept)

2 by 3 factorial experiment

- Identify DE genes that have different time profiles between different mutants.
$\alpha=$ time effect, $\beta=$ strains, $\alpha \beta=$ interaction effect

Paired Designs

Sample	Type
Sample 1	Tumour
Sample 2	Matched Normal
Sample 3	Tumour
Sample 4	Matched Normal
Sample 5	Tumour
Sample 6	Matched Normal
Sample 7	Tumour
Sample 8	Matched Normal

Sample	Type
Sample 1	Tumour
Sample 1	Matched Normal
Sample 2	Tumour
Sample 2	Matched Normal
Sample 3	Tumour
Sample 3	Matched Normal
Sample 4	Tumour
Sample 4	Matched Normal

Number of samples: 8
Number of factors: 1
Type: Number of levels: 2

Number of samples: 4
Number of factors: 2
Sample: Number of levels: 4
Type: Number of levels: 2

Design matrix for Paired experiments

We can gain precision in our estimates with a paired design, because individual variability is removed when we compare the effect of the treatment within the same sample.
R code: > design.matrix <- model.matrix (\sim Type) (unpaired)

```
> design.matrix <- model.matrix(-Sample+Type) (paired)
```


Analysis of covariance (Models with categorical and continuous variables)
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">Sample</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">ER</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">Dose</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Sample 1</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">+</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">37</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Sample 2</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">-</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">52</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Sample 3</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">+</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">65</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Sample 4</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">-</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">89</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Sample 5</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">+</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">24</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Sample 6</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">-</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">19</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Sample 7</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">+</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">54</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Sample 8</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">-</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">67</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Sample | ER | Dose |
| :--- | :--- | :--- |
| Sample 1 | + | 37 |
| Sample 2 | - | 52 |
| Sample 3 | + | 65 |
| Sample 4 | - | 89 |
| Sample 5 | + | 24 |
| Sample 6 | - | 19 |
| Sample 7 | + | 54 |
| Sample 8 | - | 67 |</table-markdown></div>

Number of samples: 8
Number of factors: 2
ER: Number of levels: 2
Dose: Continuous

Analysis of covariance (Models with categorical and continuous variables)

R code: > design.matrix <- model.matrix(~ ER + dose)

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{4} \\
Y_{5} \\
Y_{6} \\
Y_{7} \\
Y_{8}
\end{array}\right]=\left(\begin{array}{lll}
1 & 1 & 37 \\
1 & 0 & 52 \\
1 & 1 & 65 \\
1 & 0 & 89 \\
1 & 1 & 24 \\
1 & 0 & 19 \\
1 & 1 & 54 \\
1 & 0 & 67
\end{array}\right)\left[\begin{array}{c}
\beta_{0} \\
e r+ \\
d
\end{array}\right]
$$

If we consider the effect of dose linear we use 1 coefficient (degree of freedom). We can also model it as non-linear (using splines, for example).

Sample	ER	Dose
Sample 1	+	37
Sample 2	-	52
Sample 3	+	65
Sample 4	-	89
Sample 5	+	24
Sample 6	-	19
Sample 7	+	54
Sample 8	-	$\mathbf{6 7}$

Analysis of covariance (Models with categorical and continuous variables)

Interaction: Is it the effect of dose equal in $E R+$ and $E R$-?
R code: > design.matrix <- model.matrix(~ ER * dose)

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{4} \\
Y_{5} \\
Y_{6} \\
Y_{7} \\
Y_{8}
\end{array}\right]=\left(\begin{array}{cccc}
1 & 1 & 37 & 37 \\
1 & 0 & 52 & 0 \\
1 & 1 & 65 & 65 \\
1 & 0 & 89 & 0 \\
1 & 1 & 24 & 24 \\
1 & 0 & 19 & 0 \\
1 & 1 & 54 & 54 \\
1 & 0 & 67 & 0
\end{array}\right)\left[\begin{array}{c}
\\
\beta_{0} \\
e r+ \\
d \\
e r+. d
\end{array}\right]
$$

If the interaction is significant, the effect on the dose is different depending on the levels of ER.

Sample	ER	Dose	
Sample 1	+	37	
Sample 2	-	52	
Sample 3	+	65	
Sample 4	-	89	
Sample 5	+	24	
Sample 6	-	19	
Sample 7	+	54	47
Sample 8	-	67	4

Time Course experiments

Treatment	Time
Treatment A	Oh
Treatment A	1 h
Treatment A	4 h
Treatment A	16 h
Control	oh
Control	1 h
Control	4 h
Control	16 h

Number of samples: 2
Number of factors: 2
Treatment: Number of levels: 2
Time: Continuous or categorical? Intermediate solution: splines type of effect.

Time Course experiments: no assumptions

R code: > design.matrix <- model.matrix(-Sample + factor(Time))

$$
\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{4} \\
Y_{5} \\
Y_{6} \\
Y_{7} \\
Y_{8}
\end{array}\right]=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)\left[\begin{array}{c}
\\
\beta_{0} \\
a \\
T_{1} \\
T_{4} \\
T_{16}
\end{array}\right]
$$

Sample	Time
Treatment A	Oh
Treatment A	1 h
Treatment A	4 h
Treatment A	16 h
Control	Oh
Control	1 h
Control	4 h
Control	16 h

Time Course experiments

Sample
Treatment
Time
Treatment A Oh
\mathbf{R} code: $>$ design.matrix <- model.matrix(~Sample + Time)

$$
\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{4} \\
Y_{5} \\
Y_{6} \\
Y_{7} \\
Y_{8}
\end{array}\right]=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 4 \\
1 & 1 & 16 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 0 & 4 \\
1 & 0 & 16
\end{array}\right)\left[\begin{array}{l}
\\
\beta_{0} \\
a \\
X
\end{array}\right]
$$

Treatment A 1 h
Treatment A 4h
Treatment A 16h
Control Oh

Control	1 h
Control	4 h

Big coef x

$\underbrace{$| We are |
| :--- |
| assuming a |
| linear effect |
| on time |}

Intermediate models are possible: splines

Multi factorial models

- We can fit models with many variables
- Sample size must be adequate to the number of factors
- Same rules for building the design matrix must be used:
- There will be one column in design matrix for the intercept
- Continuous variables with a linear effect will need one column in the design matrix
- Categorical variable will need \#levels -1 columns
- Interactions will need (\#levels -1) x (\#levels -1)
- It is possible to include interactions of more than 2 variables, but the number of samples needed to accurately estimate those interactions is large.

Generalized linear models

Statistical models

- We want to model the expected result of an outcome (dependent variable) under given values of other variables (independent variables)

Linear models

- The observed value of Y is a linear combination of the effects of the independent variables

Arbitrary number of independent variables

$$
\begin{aligned}
& E(Y)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k} \quad \text { Polynomials are valid } \\
& E(Y)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{1}^{2}+\ldots+\beta_{p} X_{1}^{p} \\
& E(Y)=\beta_{0}+\beta_{1} \log \left(X_{1}\right)+\beta_{2} f\left(X_{2}\right)+\ldots+\beta_{k} X_{k}
\end{aligned}
$$

We can use functions of the variables if the effects are linear

- If we include categorical variables the model is called General Linear Model

Model Estimation

$$
Y=\beta X+\varepsilon
$$

β
$\hat{\beta}$
$\operatorname{se}(\hat{\beta})$

Parameter of interest (effect of X on Y)
Estimator of the parameter of interest
Standard Error of the estimator of the parameter of interest

Model Estimation

We can use leaast squares estimation

Given n observations $\left(y_{1}, . . y_{n}, \mathbf{x}_{1}, . . \mathbf{x}_{n}\right)$ minimize the differences between the observed and the predicted values

$$
\begin{array}{lll}
\hat{y}=X \hat{\beta} & \longrightarrow & \text { Fitted values (predicted by the model) } \\
e=y-\hat{y} \quad \longrightarrow & \text { Residuals (observed errors) }
\end{array}
$$

Model Estimation

We can use maximum likelihood estimation
Find the set of values that maximizes the likelihood of the observed data

$$
\begin{gathered}
M L E: \hat{\beta}=\arg \max \{L(\beta \mid x)\} \\
L(\beta \mid y)=\prod f_{\beta}(y)
\end{gathered}
$$

It is easier to work with the log-likelihood

In the case of errors normally distributed, the least squares and the MLE estimators are the same

Model Estimation

$$
Y=\beta X+\varepsilon
$$

β Parameter of interest (effect of X on Y) $\hat{\beta}$

Estimator of the parameter of interest $\operatorname{se}(\hat{\beta})$

Standard Error of the estimator of the parameter of interest

$$
\begin{aligned}
& \hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y \\
& \operatorname{se}\left(\hat{\beta}_{i}\right)=\sigma \sqrt{c_{i}}
\end{aligned}
$$

where c_{i} is the $i^{\text {th }}$ diagonal element of $\left(X^{T} X\right)^{-1}$
$\hat{y}=X \hat{\beta}$
Fitted values (predicted by the model)

$$
e=y-\hat{y}
$$

Residuals (observed errors)

Model Assumptions

In order to conduct statistical inferences on the parameters on the model, some assumptions must be made:

- The observations $1, . ., \mathrm{n}$ are independent
- Normality of the errors:

$$
\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- Homoscedasticity: the variance is constant.
- Linearity.

Generalized linear models

- Extension of the linear model to other distributions and non-linearity in the structure (to some degree)

Link function

$$
g(E(Y))=X \beta
$$

$-Y$ must follow a probability distribution from the exponential family (Bernoulli, Binomial, Poisson, Gamma, Normal,...)

- Parameter estimation must be performed using an iterative method (IWLS).

Example: Logistic Regression

- We want to study the relationship between the presence of an amplification in the ERBB2 gene and the size of the tumour in a specific type of breast cancer.
- Our dependent variable Y, takes two possible values: "AMP", "NORMAL" ("YES", "NO")
$-X$ (size) takes continuous values.

Example: Logistic Regression

It is very difficult to see the relationship. Let's model the

"probabilit
y of
success": in this case, the probability of amplification

Example: Logistic Regression

Some
predictions are out of the possible range for a probability

Example: Logistic Regression

We can transform the probabilities to a scale that goes from -Inf to Inf using log odds

Example: Logistic Regression

How does this relate to the generalized linear model?

- Y follows a Bernoulli distribution; it can take two values (YES or NO)
- The expectation of Y, p is the probability of YES (EY=p)
- We assume that there is a linear relationship between size and a function of the expected value of Y : the log odds (the link function)

$$
\begin{aligned}
& \log \operatorname{odds}(\text { prob.amplif })=\beta_{0}+\beta_{1} \text { Size } \\
& g(E Y)=\beta X
\end{aligned}
$$

Binomial Distribution

- It is the distribution of the number of events in a series of n independent Bernoulli experiments, each with a probability of success \mathbf{p}.
- Y can take integer values from 0 to n
- $\mathrm{EY}=\mathrm{np}$
- $\operatorname{Var} Y=n p(1-p)$

Poisson Distribution

- Let $Y \sim B(n, p)$. If n is large and p is small then Y can be approximated by a Poisson Distribution (Law of rare events)
- $Y \sim P(\lambda)$
- $\mathrm{EY}=\lambda$
- $\operatorname{Var} Y=\lambda$

Negative Binomial Distribution

- Let $Y \sim N B(r, p)$
- Represents the number of successes in a Bernoulli experiment until r failures occur.
- It is also the distribution of a continuous mixture of Poisson distributions where λ follows a Gamma distribution.
- It can be seen as a overdispersed Poisson distribution.

Negative Binomial distribution. $r=10, p=0.3$

$$
\begin{array}{lll}
p=\frac{\mu}{\sigma^{2}} & \longrightarrow & \text { Overdispersion param } \\
r=\frac{\mu^{2}}{\sigma^{2}-\mu} \quad \longrightarrow & \text { Location parameter }
\end{array}
$$

Moving from point estimation

- Everything starts with a biological question to test:
- What genes are differentially expressed under one treatment?
- What genes are more commonly amplified in a class of tumours?
- What promoters are methylated more frequently in cancer?
- We must express this biological question in terms of a parameter in a model.
- We then conduct an experiment, obtain data and estimate the parameter.
- How do we take into account uncertainty in order to answer our question based on our estimate?

Confidence Intervals

- Range of "likely" values for our theoretical parameter β
- They have a confidence I- α associated
- Under many repetitions of our experiment, a proportion I- α of the confidence intervals we would build would contain the real value of the parameter

$$
\hat{\beta}_{i} \pm t(n-p, 1-\alpha / 2) \operatorname{se}\left(\hat{\beta}_{i}\right)
$$

Hypothesis testing

- Null Hypothesis: Our population follows a (known) distribution defined by a set of parameters: $H_{0}: X \sim f\left(\theta_{1}, \ldots \theta_{k}\right)$
- Take a random sample $\left(X_{1}, \ldots X_{n}\right)=\left(x_{1}, \ldots x_{n}\right)$ and observe test statistic

$$
T\left(X_{1}, \ldots X_{n}\right)=t\left(x_{1}, \ldots x_{n}\right)
$$

- The distribution of T under H_{0} is known (g(.))
- P-value : probability under H_{0} of observing a result as extreme as $t\left(x_{1}, \ldots x_{n}\right)$

Type I and Type II errors

- Type I error: probability of rejecting the null hypothesis when it is true. Usually, it is the significance level of the test. It is denoted as α
- Type II error: probability of not rejecting the null hypothesis when it is false It is denoted as β
- Decreasing one type of error increases the other, so in practice we fix the type I error and choose the test that minimizes type II error.

The power of a test

- The power of a test is the probability of rejecting the null hypothesis at a given significance level when a specific alternative is true
- For a given significance level and a given alternative hypothesis in a given test, the power is a function of the sample size
- What is the difference between statistical significance and biological significance?

The Likelihood Ratio Test (LRT)

- We are working with models, therefore we would like to do hypothesis tests on coefficients or contrasts of those models
- We fit two models M_{1} without the coefficient to test and M_{2} with the coefficient.
- We compute the likelihoods of the two models $\left(L_{1}\right.$ and $\left.L_{2}\right)$ and obtain $L R T=-2 \log \left(L_{1} / L_{2}\right)$ that has a known distribution under the null hypothesis that the two models are equivalent. This is also known as model selection.

Large-Scale Hypothesis Testing

- In sequencing experiments we are fitting one model for each probe/gene/exon/sequence of interest, and therefore performing thousands of tests.
- Type I error is not equal to the significance level of each test.
- Multiple test corrections try to fix this problem (Bonferroni, FDR,...)

Controlling the number of errors

$\mathrm{N}=$ number of hypothesis tested
$R=$ number of rejected hypothesis $\mathrm{n}_{0}=$ number of true hypothesis

	Null Hypothesis True	Alternative Hypothesis True	Total
Not Significant (don't reject)	\#True Negative	\# False Negative (Type II error)	N- \# Rejections
Significant (Reject)	\# False positive (Type I error)	\#True positive	\# Total Rejections
Total	n_{0}	$\mathrm{~N}-\mathrm{n}_{0}$	

Controlling the family-wise error rate

- One alternative is to control the probability of making at least one false rejection:

$$
F W E R=P\left\{\bigcup_{I_{0}}\left(p_{i} \leq \frac{\alpha}{N}\right)\right\} \leq \sum_{I_{0}} P\left\{p_{i} \leq \frac{\alpha}{N}\right\}=N_{0} \frac{\alpha}{N} \leq \alpha
$$

Bonferroni correction: reject each hypothesis at α / \mathbf{N} level
It is a very conservative method (we are controlling for even just one false rejection!!!)

Controlling the False Discovery Rate (FDR)

$$
\begin{aligned}
& N=\text { number of hypothesis tested } \\
& R=\text { number of rejected hypothesis } \\
& n_{0}=\text { number of true hypothesis }
\end{aligned}
$$

| | Null Hypothesis True | Alternative
 Hypothesis True | Total |
| :--- | ---: | ---: | ---: | ---: |
| Not Significant
 (don't reject) | \#True Negative | \# False Negative
 (Type II error) | N- \# Rejections |
| Significant (Reject) | V= \# False positive
 (Type I error) | \#True positive | R=\# Total
 Rejections |
| Total | n_{0} | $\mathrm{~N}-\mathrm{n}_{0}$ | N |

Family Wise Error Rate: FWER $=P(V \geq I)$
False Discovery Rate: FDR $=E(V / R \mid R>0) P(R>0)$

FDR aims to control the set of false positives among the rejected null hypothesis.

Benjamini-Hochberg FDR Control)

If we order the observed p-values from smallest to largest, let $i_{\text {max }}$ be the largest index such as

$$
p(i) \leq \frac{i}{N} q
$$

Where q is a value between 0 and I chosen a priori such as

$$
F D R=E(V / R \mid R>0) \leq q
$$

Then $B H$ criteria is to reject $H_{o(i)}$ for $i \leq i_{\text {max }}$
There is a relationship between FDR as the Bayes posterior probability of nullness (see Efron and Hastie)

Multiple power problem

- We have another problem related to the power of each test. Each unit tested has a different test statistic that depends on the variance of the distribution. This variance is usually different for each gene/transcript,...
- This means that the probability of detecting a given difference is different for each gene; if there is low variability in a gene we will reject the null hypothesis under a smaller difference
- Methods that shrinkage variance (like the empirical Bayes in limma for microarrays) deal with this problem.

Models for counting data

Microarray expression data

Data are color intensities
RG densities

$\log y_{i j} \sim N\left(\mu_{j}, \sigma_{j}^{2}\right)$
Adapted from slides by Benilton Carvalho

Sequencing data

Extra variability

mean

Based on the data of Nagalakshmi et al. Science 2008; slide adapted from Huber;

Negative binomial model for sequencing data

- For subject j, on transcript i:

$$
Y_{i j} \mid \lambda_{i j} \sim P\left(\lambda_{i j}\right)
$$

$$
\begin{aligned}
N_{i j} \mid \eta_{i j} & \sim \operatorname{Poisson}\left(\eta_{i j}\right) \\
\eta_{i j} \mid \mu_{i j} & \sim \operatorname{Gamma}\left(\beta_{1}\left(\mu_{i j}\right), \beta_{2}\left(\mu_{i j}\right)\right) \\
N_{i j} & \sim \operatorname{NB}\left(\mu_{i j}, \alpha\left(\mu_{i j}\right)\right) \\
\log \mu_{i j} & =s_{j}+\sum_{k} \beta_{i k} x_{k j}
\end{aligned}
$$

smooth dispersion-mean relation α

Estimating Overdispersion with edgeR

- edgeR (Robinson, McCarthy, Chen and Smyth)
- Total CV ${ }^{2}=$ Technical CV ${ }^{2}+$ Biological CV ${ }^{2}$

Variability in gene

 abundance between replicates- Borrows information from all genes to estimate BCV.
- Common dispersion for all tags
- Empirical Bayes to shrink each dispersion to the common dispersion.

Estimating Overdispersion with DESeq

- DESeq (Anders, Huber)
- $\operatorname{Var}=s \mu+\alpha s^{2} \mu^{2}$

Size factor for the sample

- estimateDispersions()

1. Dispersion value for each gene
2. Fits a curve through the estimates
3. Each gene gets an estimate between (1) and (2).

Reproducibility

Slide by Wolfgang Huber

A few number of genes get most of the reads

Slide by Wolfgang Huber ${ }^{8}$

Effective library sizes

- Also called normalization (although the counts are not changed!!!)
- We must estimate the effective library size of each sample, so our counts are comparable between genes and samples
- Gene lengths?
- This library sizes are included in the model as an offset (a parameter with a fixed value)

$$
\log \mu_{i j}=s_{j}+\sum_{k} \beta_{i k} x_{k j}
$$

Estimating library size with edgeR

- edgeR (Robinson, McCarthy, Chen and Smyth)
- Adjust for sequencing depth and RNA composition (total RNA output)
- Choose a set of genes with the same RNA composition between samples (with the log fold change of normalised counts) after trimming
- Use the total reads of that set as the estimate.

Estimating library size with DESeq

- DESeq (Anders, Huber)
- Adjust for sequencing depth and RNA composition (total RNA output)
- Compute the ratio between the log counts in each gene and each sample and the log mean for that gene on all samples.
- The median on all genes is the estimated library size.

References

- Anders and Huber. Genome Biology, 2010; 11:R106
- Auer and Doerge. Genetics 2010, 185:405-416
- Harrell. Regression Modeling Strategies
- Robles et al. BMC Genomics 2012, 13:484
- Venables and Ripley. Modern Applied Statistics with S

