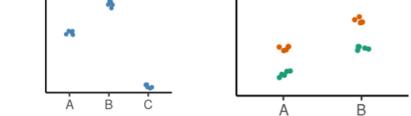
Models And Contrasts In R And Deseq2

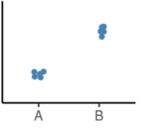
CAMBRIDGE INSTITUTE

OUTLINE

- How to interpret linear models coefficients
 - categorical variables & model matrix
- How to specify models in R using the "formula syntax"
- How to interpret the results of different model designs
 - One factor, 3 levels
 - Two factors, additive
 - Two factors, interaction



• How *DESeq2* reports its results and how to interpret them



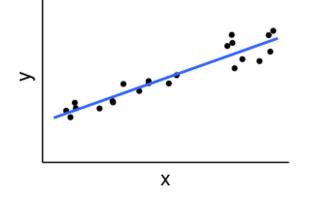
y ~ x

LINEAR MODEL

A model is a simplified representation of how we think different variables relate to each other.

Linear models are the most commonly used in statistical inference.

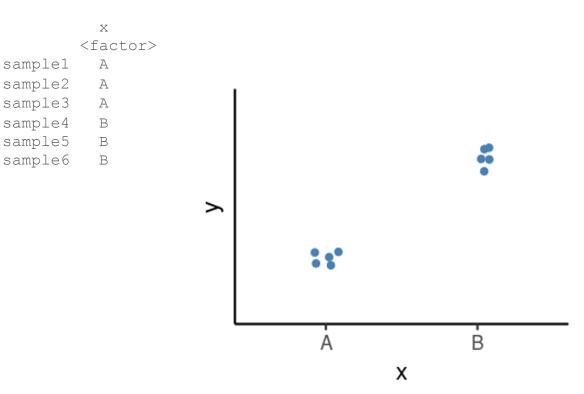
$$Y = \beta_0 + \beta_1 X + \epsilon$$



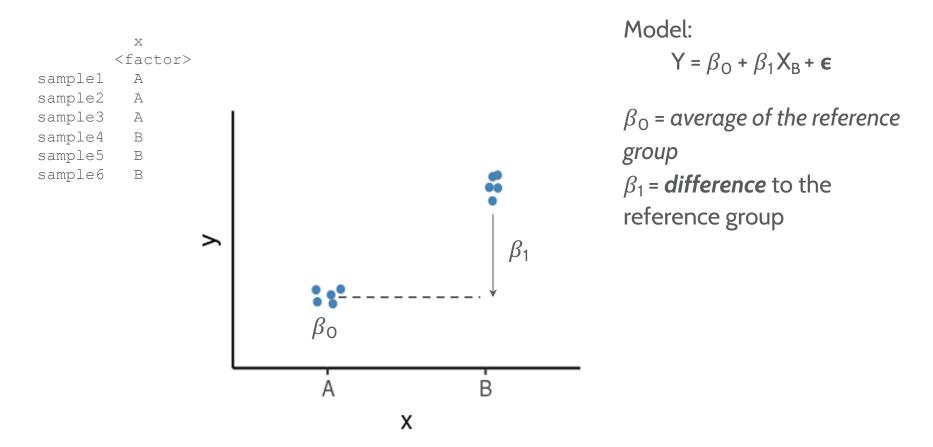
X = Independent variable

Y = Dependent variable

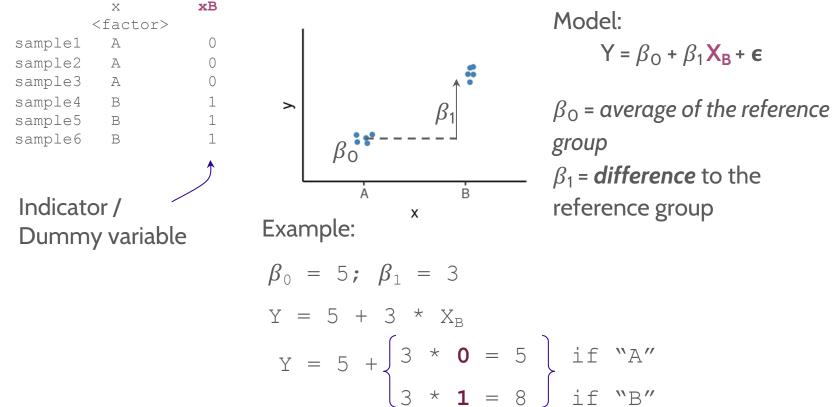
LINEAR MODELS IN R | CATEGORICAL VARIABLES



LINEAR MODELS IN R | CATEGORICAL VARIABLES



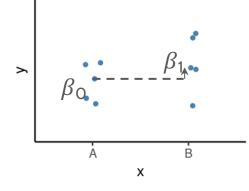
LINEAR MODELS IN R | CATEGORICAL VARIABLES

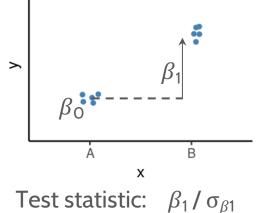


LINEAR MODELS IN R | NULL HYPOTHESIS TESTING

How compatible is my data with a "boring" hypothesis?

Null hypothesis: $\beta_1 = 0$





Model:

 $\mathbf{Y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{X}_{\mathbf{B}} + \boldsymbol{\epsilon}$

 β_0 = average of the reference group β_1 = **difference** to the reference group

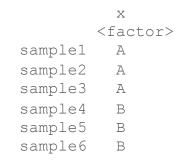
(our estimate divided by the uncertainty in that estimate)

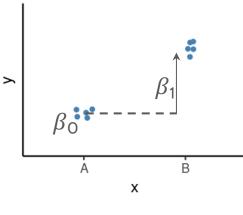
P-value calculated from the test statistic

• Low p-value indicates that the data are not very compatible with the null hypothesis.

Exercise 1

LINEAR MODELS IN R | MODEL SPECIFICATION





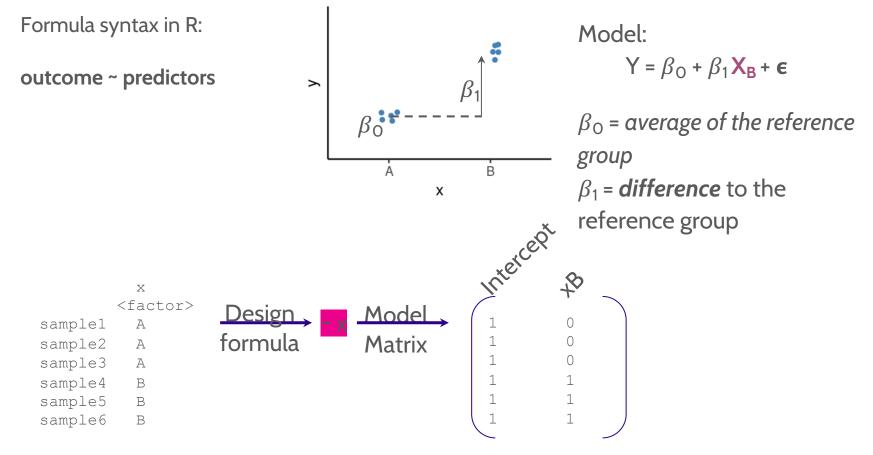
Model: Y = $\beta_0 + \beta_1 X_B + \epsilon$

 β_0 = average of the reference group β_1 = difference to the reference group

Formula syntax in R:

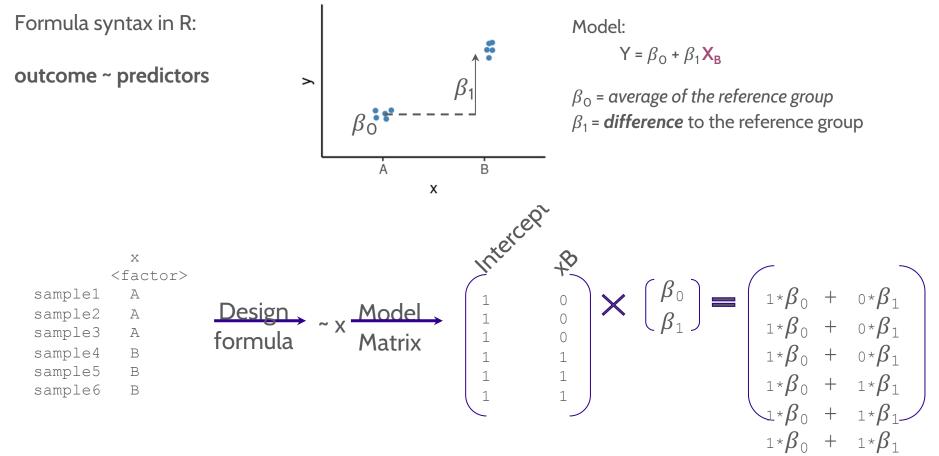
outcome ~ predictors

LINEAR MODELS IN R | MODEL SPECIFICATION



Example in R worksheet: "Model Specification - Formula Syntax"

LINEAR MODELS IN R | MODEL SPECIFICATION



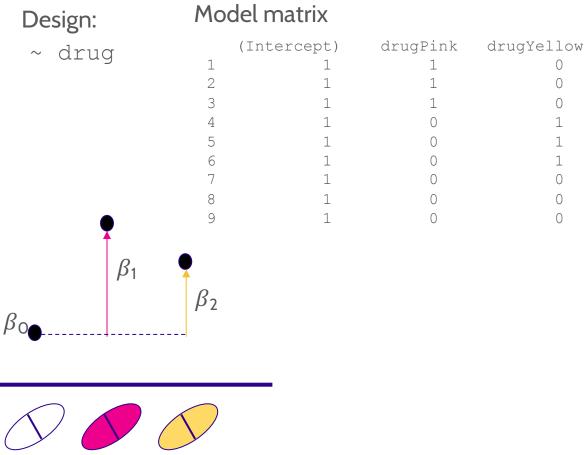
COMMON DESIGNS One factor, 3 levels Two factors One factor. 2 genotype æ > > > MUT WT A В A B A В treatment х Х

- Define our model with formula syntax
- Categorical variables are encoded as indicator variables in a model matrix
 - R does this for us
- Interpret coefficients to define hypothesis of interest

COMMON DESIGNS | ONE FACTOR, 3 LEVELS

	drug	D	esign:
sample1	Pink		0
sample2	Pink	~	~ drug
sample3	Pink		
sample4	Yellow		
sample5	Yellow		
sample6	Yellow	_	
sample7	White		
sample8	White		
sample9	White		
Null hypo Pink vs W			7
$\beta_1 = O$		βo	
Yellow vs $\beta_2 = 0$	White	, 0	
			\frown
Yellow vs	Pink	\langle	

 $\beta_2 - \beta_1 = 0$



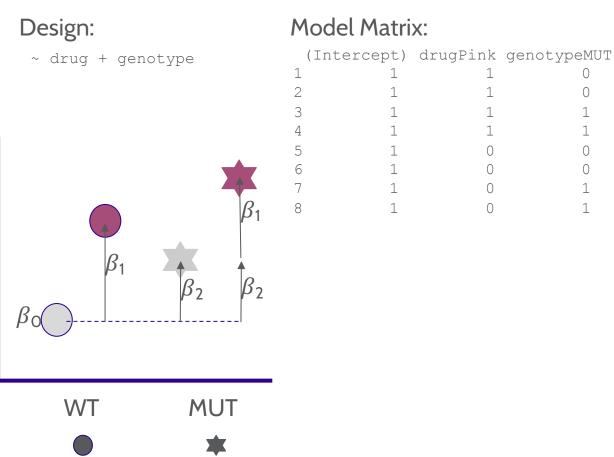
MODEL DESIGNS | TWO FACTORS - ADDITIVE MODEL

	drug	genotype
sample1	Pink	WT
sample2	Pink	WΤ
sample3	Pink	MUT
sample4	Pink	MUT
sample5	White	WT
sample6	White	WT
sample7	White	MUT
sample8	White	MUT

Null hypothesis:

```
Pink vs White drug
\beta_1 = 0
```

WT vs MUT genotype $\beta_2 = 0$



 $\left(\right)$

1

0

0

1

1

0

0

 $\left(\right)$

 $\left(\right)$

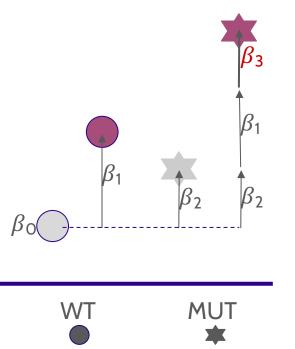
1

MODEL DESIGNS | TWO FACTORS - INTERACTION MODEL

	drug	genotype
sample1	Pink	WT
sample2	Pink	WΤ
sample3	Pink	MUT
sample4	Pink	MUT
sample5	White	WT
sample6	White	WΤ
sample7	White	MUT
sample8	White	MUT

Design:

~ drug + genotype + drug:genotype



Null hypothesis: Pink vs White (<u>WT</u>) $\beta_1 = 0$ Pink vs White (<u>MUT</u>) $\beta_1 + \beta_3 = 0$ WT vs MUT (<u>White</u>) $\beta_2 = 0$ WT vs MUT (<u>Pink</u>) $\beta_2 + \beta_3 = 0$

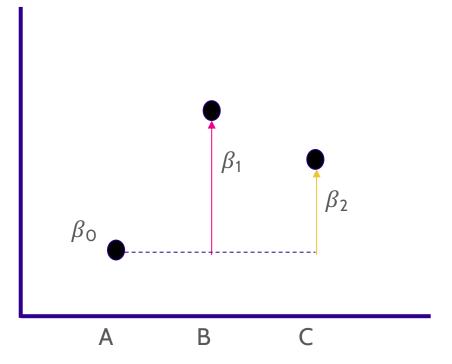
Interaction ("Difference of differences"): $\beta_3 = 0$

MODEL SPECIFICATION IN DESEQ2

- Create DESeqDataSet object
- Add model design:

design(dds) \leftarrow ~ treatment

- Fit the statistical model dds ← DESeq(dds)
- Check coefficients for hypothesis testing resultsNames(dds)

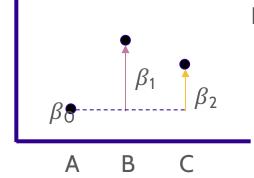


MODEL SPECIFICATION IN DESEQ2

- Create DESeqDataSet object
- Add model design: design(dds) ~ ~ treatment
- Fit the statistical model
 dds

 DESeq(dds)
- Check coefficients for hypothesis testing resultsNames(dds)

	Null Hypothesis		
B vs A	β ₁ = 0		
C vs A	β ₂ = 0		
C vs B	$\beta_2 - \beta_1 = 0$		



DESeq coefficient names:

 $\beta_0 \rightarrow \text{Intercept}$ $\beta_1 \rightarrow$ treatment_B_vs_A $\beta_2 \rightarrow$ treatment_C_vs_A

MODEL SPECIFICATION IN *DESEQ2* | INTERPRETING RESULTS

results(dds, contrast = list("treatment_B_vs_A"))

	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
gene1	32.80405	0.359444	0.598072	0.601004	0.5478372	0.923764
gene2	4.01072	3.407763	1.649827	2.065527	0.0388732	0.641407
gene3	7.01837	0.743337	0.994100	0.747749	0.4546118	0.923764
gene4	1.51006	2.814822	2.464686	1.142061	0.2534287	0.923764
gene5	11.23166	0.480522	0.894709	0.537071	0.5912189	0.923764
gene96	16.21864	0.684962	0.809892	0.845745	0.3976952	0.923764
gene97	2.91349	1.784327	1.790046	0.996805	0.3188590	0.923764
gene98	13.29915	-0.634070	0.768728	-0.824830	0.4094680	0.923764
gene99	82.45653	-0.963147	0.505109	-1.906810	0.0565452	0.799710
gene100	6.25763	1.673078	1.252839	1.335429	0.1817359	0.923764

baseMean \rightarrow Mean across *all* samples

- $log_2FoldChange \rightarrow log_2(B/A)$ i.e. the difference between treatments
- $lfcSE \rightarrow the standard error of the log2FoldChange$
- stat \rightarrow the test statistic = log2FoldChange/lfcSE

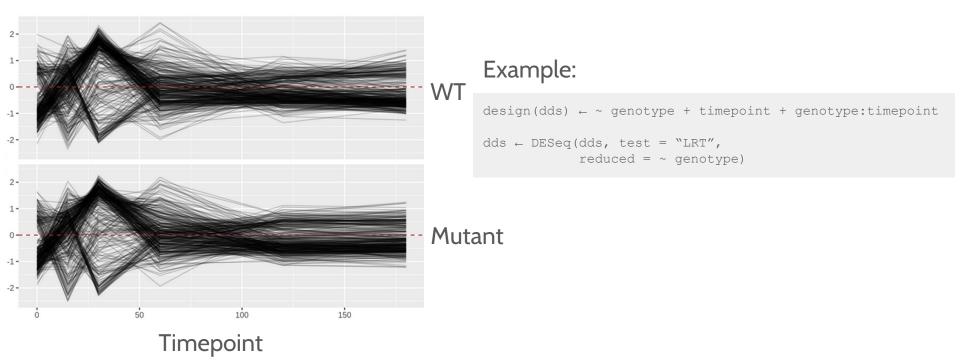
pvalue \rightarrow the p-value of the Wald test

padj \rightarrow the p-value adjusted for multiple testing (false discovery rate)

MODEL SPECIFICATION IN *DESEQ2* | LIKELIHOOD-RATIO TEST

The default test in *DESeq2* is the Wald test, testing for null hypothesis that LFC = O

And alternative is the Likelihood Ratio Test



CONCLUSIONS

- Differential expression tests are based on linear models, where the gene expression is modelled as an outcome of several variables of interest (e.g. treatment, genotype, infection status, etc.).
- Linear models use *indicator or dummy variables* to encode categorical variables in a model matrix.
- To define models in R/DESeq2 we use the formula syntax: ~ variables
- Some common models are:
 - Single factor: ~ variable1
 - Two factor, additive: ~ variable1 + variable2
 - **Two factor**, interaction: ~ variable1 + variable2 + variable1:variable2
- Interpreting our model coefficients allows us to define hypothesis/comparisons/contrasts of interest.
- In DESeq2 we use the `results()` function to obtain the log2(fold-change) in gene expression between groups of interest ("contrast").