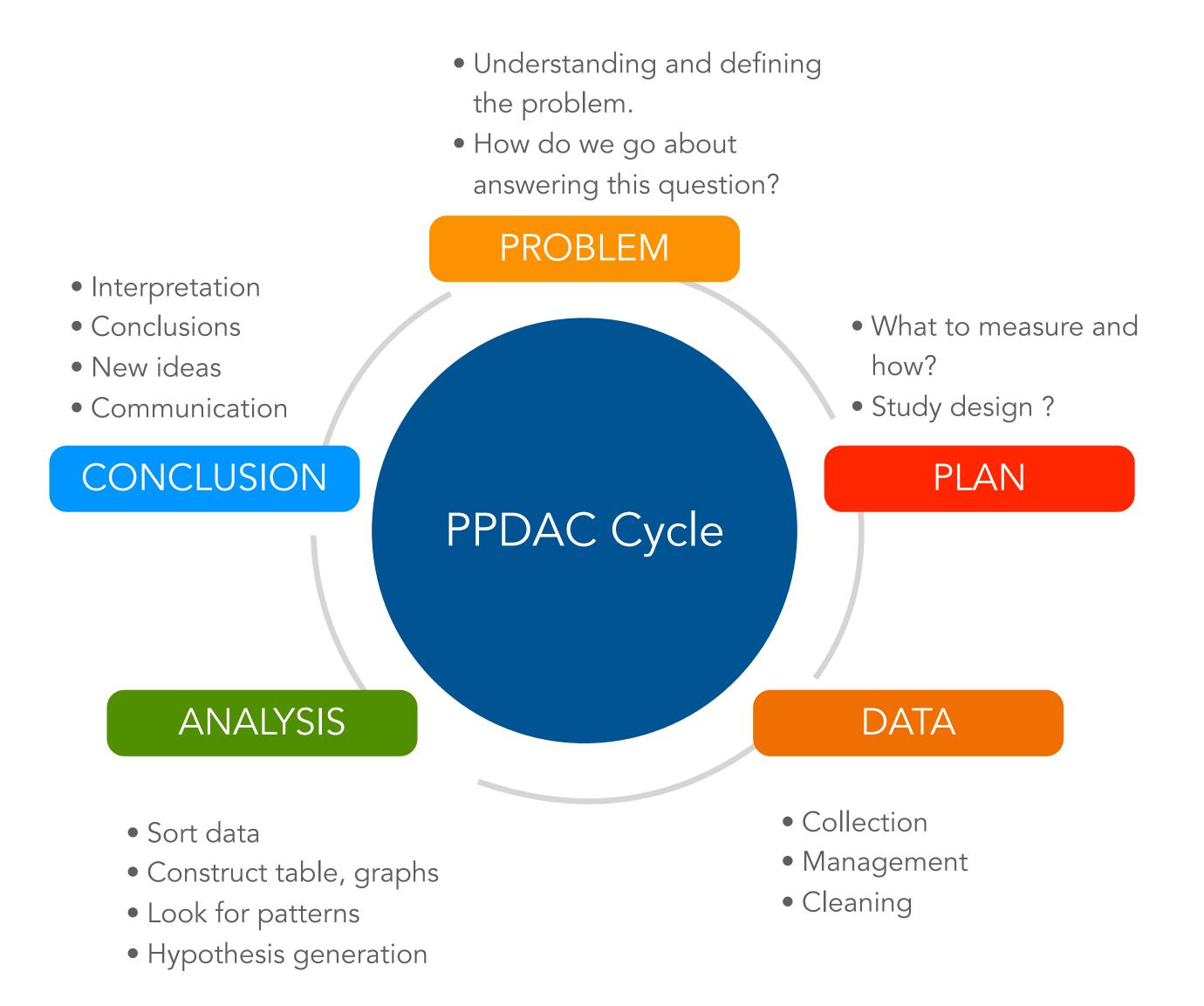
Statistics of RNA-seq analysis


```
> dds <- DESeqDataSetFromMatrix(cnts, DataFrame(cond), ~ cond)</pre>
> dds <- DESeq(dds)</pre>
> results(dds)
log2 fold change (MLE): cond 2 vs 1
Wald test p-value: cond 2 vs 1
DataFrame with 1000 rows and 6 columns
      baseMean log2FoldChange
                                   lfcSE
                                                       pvalue
                                               stat
                                                                   padj
                    <numeric> <numeric> <numeric> <numeric> <numeric>
     <numeric>
       97.3140
                    -0.682067
                                                               0.745842
                                0.344525 - 1.979730 \ 0.0477339
      109.9860
                    -0.228819
                                0.450720 - 0.507676 \ 0.6116808
                                                               0.944354
                     0.104291
       98.8111
                                0.462113
                                          0.225683 0.8214483
                                                               0.978382
      103.2615
                     0.306400
                                0.297682
                                          1.029284 0.3033460
                                                               0.944354
                     0.316338
       97.9406
                                0.357242
                                          0.885501 0.3758864
                                                               0.944354
       86.8057
                                0.287042
                                          0.162939 0.8705668
                                                               0.980044
996
                    0.0467703
997
      101.4437
                   -0.2070806
                                0.339886 - 0.609264 \ 0.5423495
                                                               0.944354
998
       78.1356
                   -0.6372790
                                0.369515 - 1.724637 \ 0.0845930
                                                               0.824310
999
       89.2920
                    0.7554725
                                0.306192
                                          2.467314 0.0136131
                                                               0.614613
                   -0.0728875
      103.5569
                                0.348655 -0.209053 0.8344065
                                                               0.978382
1000
```

STATISTICS AS AN INVESTIGATIVE PROCESS OF PROBLEM-SOLVING AND DECISION-MAKING



STATISTICS AS AN INVESTIGATIVE PROCESS OF PROBLEM-SOLVING AND

DECISION-MAK ** fortiers in Microbiology **

• IFN-γ response increases as infection progresses

 Calcium response pathways are downregulated

• Understanding and defining the problem.

How do we go about answering this question?

PROBLEM

PPDAC Cycle

Toxoplasma gondii infection causes a host of severe neurological disorders. Our understanding of the molecular mechanisms associated with infection is incomplete.

We want to study the effect of Toxoplasma gondii infection (chronic and acute) in mouse brain

Interpretation

- Conclusions
- New ideas
- Communication

CONCLUSION

• What to measure and how?

• Study design ?

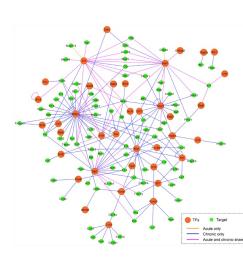
PLAN

- Total gene expression profile of the brain in infection versus noinfection
- A two-factor study with three biological replicates in each group with matched controls

w expression High expression

Immune system process

Antigen processing and presentation - Immune response - Innate immune response - Response to interferon-gamma - Immune effector process - Defense response - rspecies interaction between organisms - T cell activation - Defense response to other organism - 0 2 4 6 8 - log10FDR



ANALYSIS

- Sort data
- Construct table, graphs
- Look for patterns
- Hypothesis generation

DATA

- Collection
- Management
- Cleaning

Profiling the total transcriptome with RNA-seq
Preprocessing and quality control

Hu et al. Profiling of Mouse Brain During Acute and Chronic Infections by Toxoplasma gondii Oocysts. Front. Microbiol. 2020

OUTLINE

- Experimental Design
- General Statistical Concepts
- Statistical aspects specific to bulk RNA-seq analysis

OUTLINE

- Experimental Design
- Statistical Concepts Bite size statistics
- Statistical aspects of bulk RNA-seq analysis

CONSEQUENCES OF POOR EXPERIMENTAL DESIGN

Inability to answer the questions we would like to answer

- Cost of experimentation.
- Limited & Precious material, esp. clinical samples.
- Immortalization of data sets in public databases and methods in the literature. Our bad science begets more bad science.
- Ethical concerns of experimentation: animals and clinical samples.

A WELL-DESIGNED EXPERIMENT

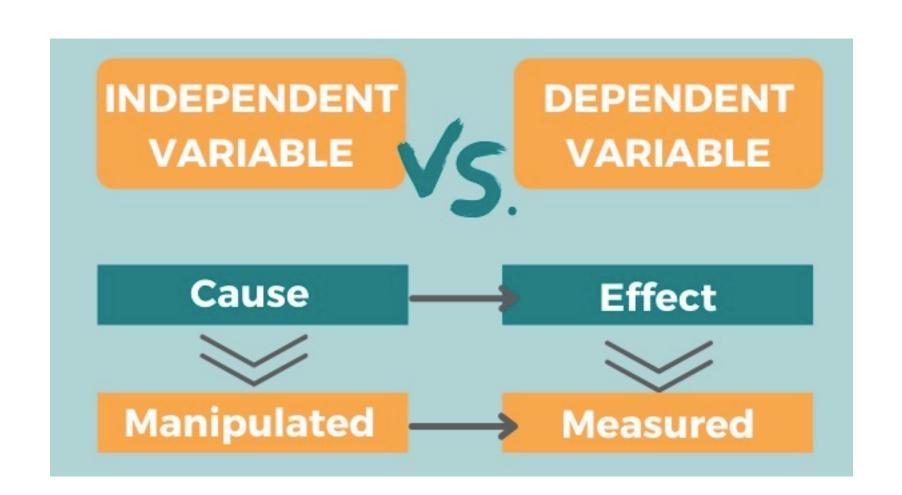
Should have

- Clear objectives
- Focus and simplicity
- Sufficient power
- Randomised comparisons

And be

- Precise
- Unbiased
- Amenable to statistical analysis
- Reproducible

VARIABLES IN THE EXPERIMENT

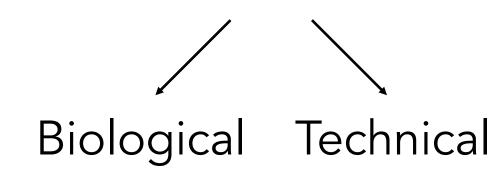


- Independent variable also called as Input or Predictor or Explanatory variable
- Dependent variables also called as output or Response variable

- Based on the type of measurements both Independent and Dependent variables further classified ...
 - O Continuous: Height, weight, Microarray intensities
 - O Discontinuous: RNAseq counts
 - O Categorical: Sex, color (Categorical independent variables also called as factors)

SOURCES OF VARIATION

dependent variable = f (independent variable) + noise



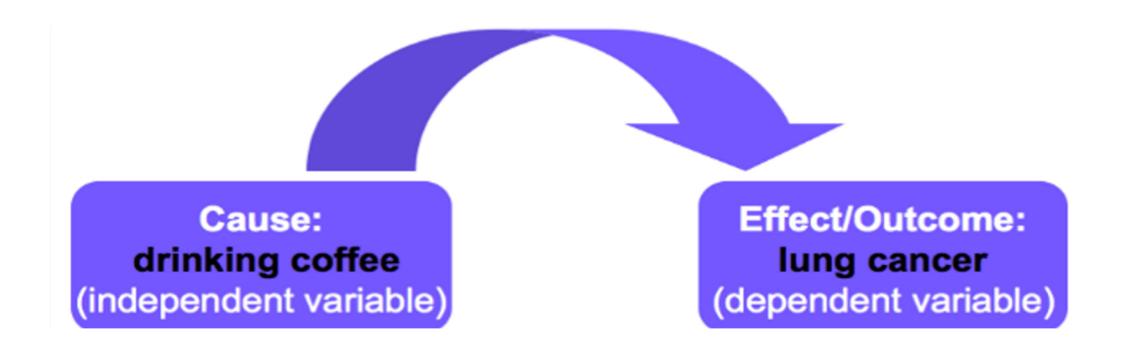
- Biological "noise"
 Biological processes are inherently stochastic
 - Single cells, cell populations, individuals, organs, species....
 - Timepoints, cell cycle, synchronized vs. unsynchronized
- Technical noise
 - Reagents, antibodies, temperatures, pollution
 - Platforms, runs, operators
- Replication is required to capture variance

TYPES OF REPLICATION

- Biological replication:
 - In vivo:
 - Patients
 - Mice
 - In vitro:
 - Different cell lines
 - Re-growing cells (passages)
- Technical replication:
 - Experimental protocol
 - Measurement platform (i.e. sequencer)

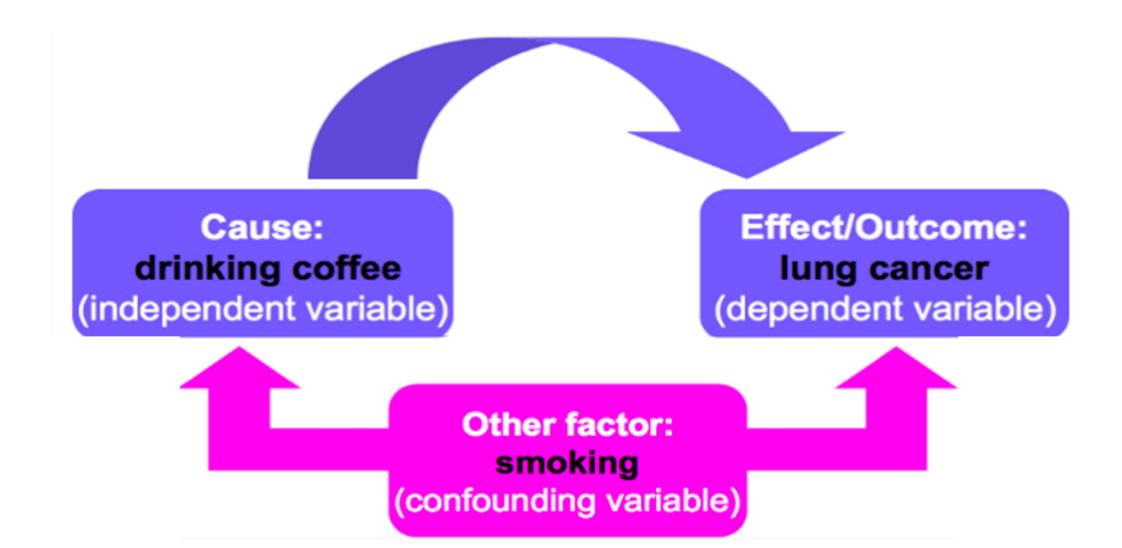
CONFOUNDING FACTORS

- Also known as extraneous, hidden, lurking or masking factors, or the third variable or mediator variable.
- May mask an actual association or falsely demonstrate an apparent association between the independent & dependent variables.
- Hypothetical Example would be a study of coffee drinking and lung cancer.



CONFOUNDING FACTORS

- Also known as extraneous, hidden, lurking or masking factors, or the third variable or mediator variable.
- May mask an actual association or falsely demonstrate an apparent association between the independent & dependent variables.
- Hypothetical Example would be a study of coffee drinking and lung cancer.

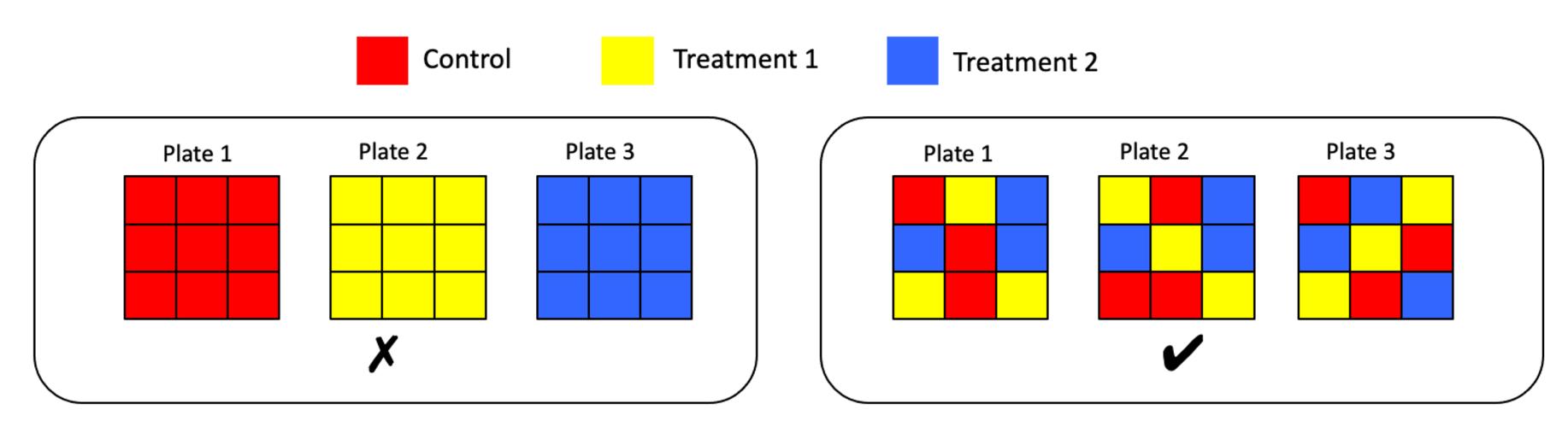


SOLUTIONS

- Write it all down!!!!!!!!
- Controlling technical effects:
 - Randomisation
 - Statistical analyses assume randomised comparisons
 - May not see issues caused by non-randomised comparisons
 - Make every decision random not arbitrary
 - Caveat: over-randomization can increase error
 - Blinding
 - Especially important where subjective measurements are taken
 - Potentially multiple degrees of blinding (eg. double-blinding)

RANDOMISED BLOCK DESIGN

 Blocking is the arranging of experimental units in groups (blocks) that are similar to one another.

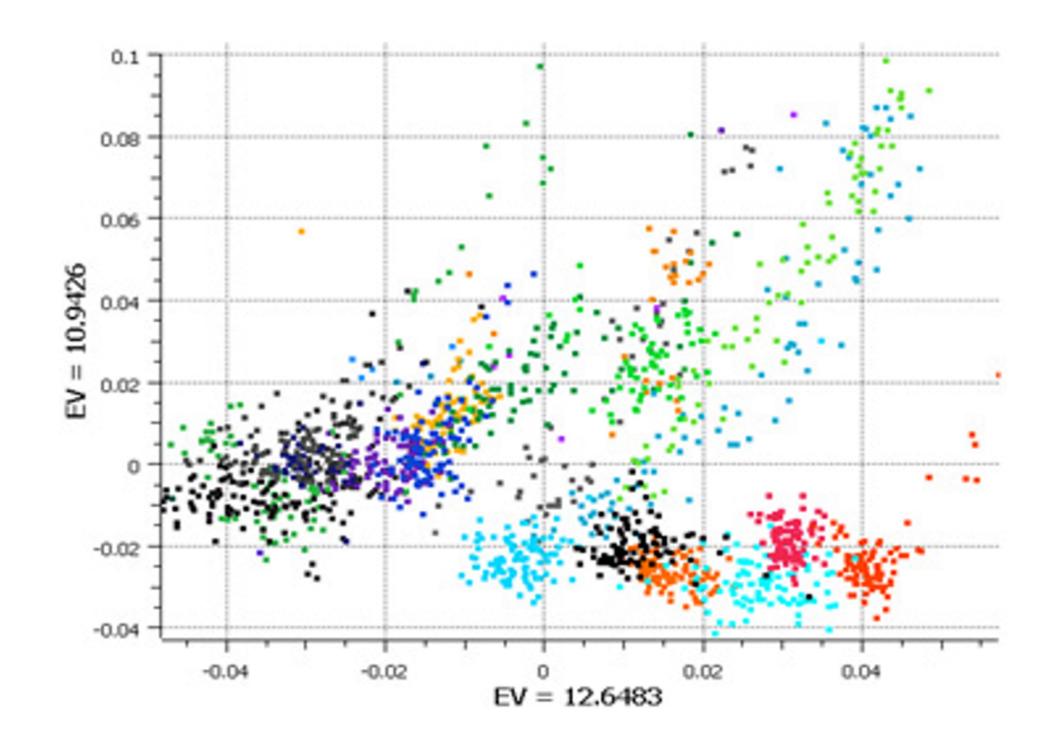


- Each plate contains spatially randomised equal proportions of:
 - Control
 - Treatment 1
 - Treatment 2
- controlling plate effects.

RANDOMISED BLOCK DESIGN

Good design example: Alzheimer's study from GlaxoSmithKline

Plate effects by <u>plate</u>
Left PCA plot show large plate effects.
Each colour corresponds to a different plate



RANDOMISED BLOCK DESIGN

Good design example: Alzheimer's study from GlaxoSmithKline

Plate effects by <u>plate</u>
Left PCA plot show large plate effects.
Each colour corresponds to a different plate

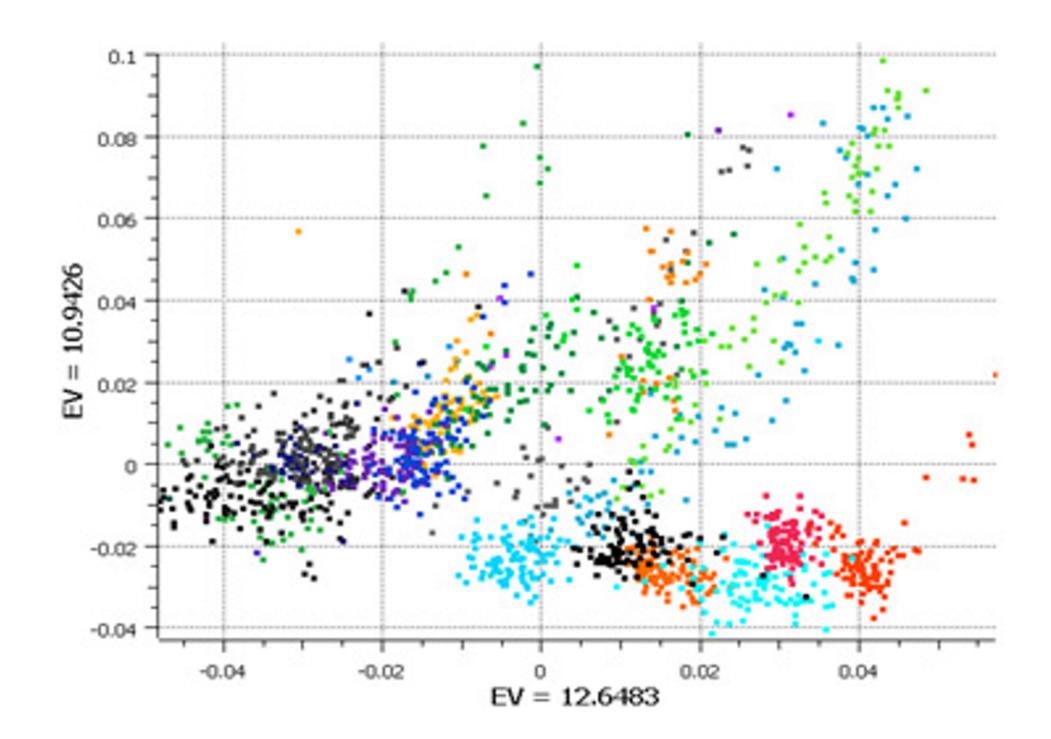
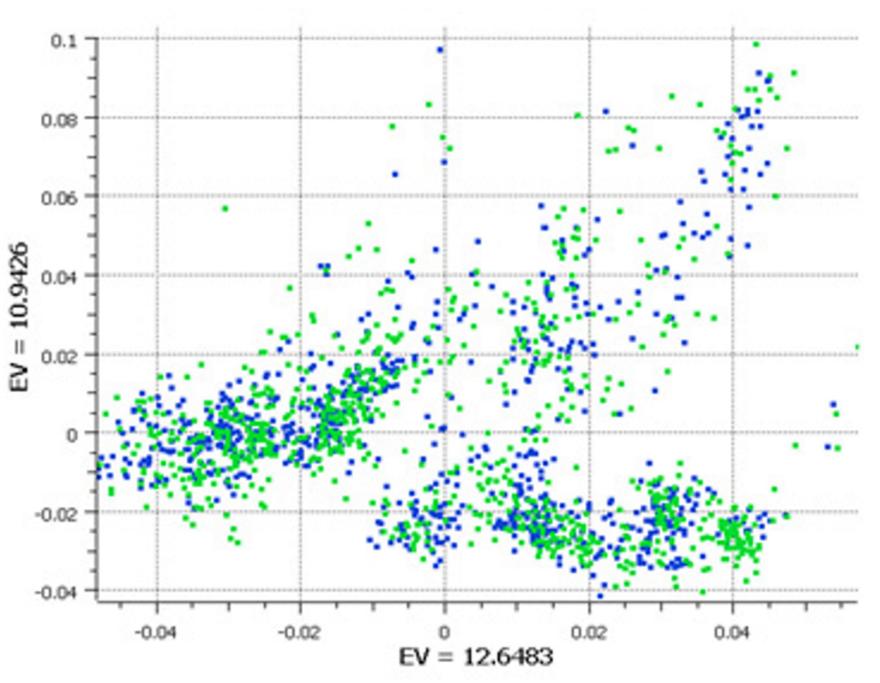


Plate effects by case/control
Right PCA plot shows each plate cluster contains
equal proportions of cases (blue) and controls (green).



EXPERIMENTAL CONTROLS

- Ideal : Everything is identical across conditions except the variable you are testing
- Controlling errors
 - Type I: False Positives
 - Negative controls: should have minimal or no effect
 - Type II: False Negatives
 - Positive controls: known effect
- Technical controls
 - Detect/correct technical biases
 - Normalise measurements (quantification)

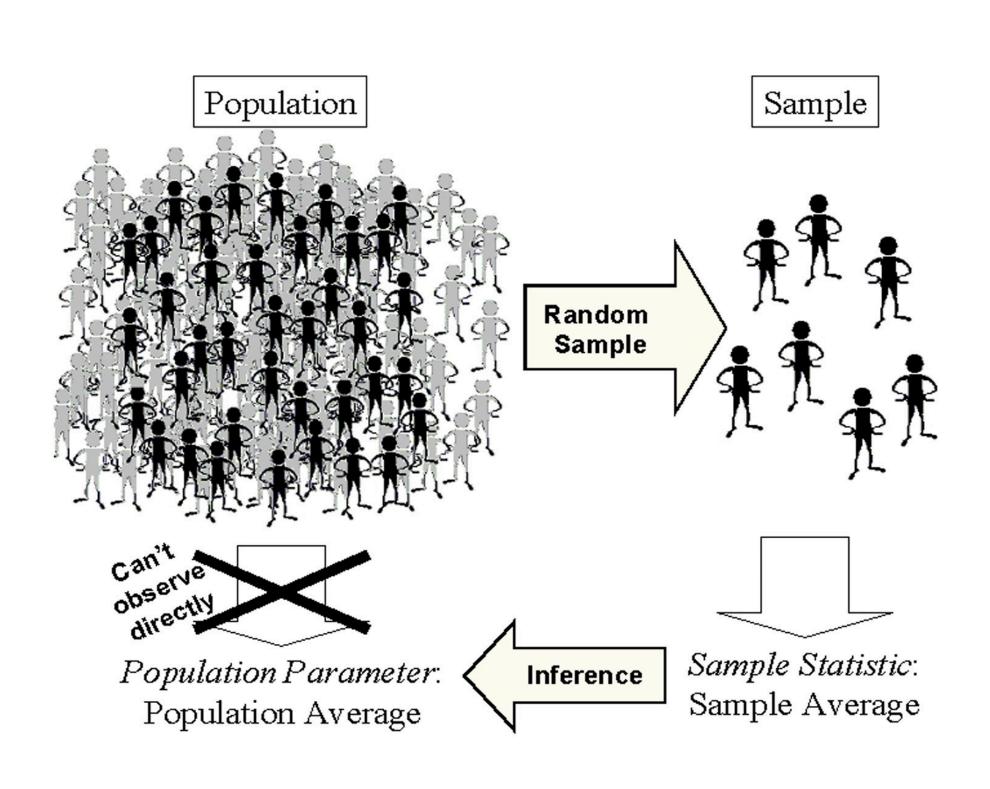
EXAMPLES OF EXPERIMENTAL CONTROLS

- Wild-type organism (knockouts)
- Inactive siRNA (silencing)
- Vehicle (treatments)
- Spike-ins (quantification/normalisation)
- "Gold standard" data points
- Multi-level controls
- e.g. contrast Vehicle/Input vs. Treatment/Input

OUTLINE

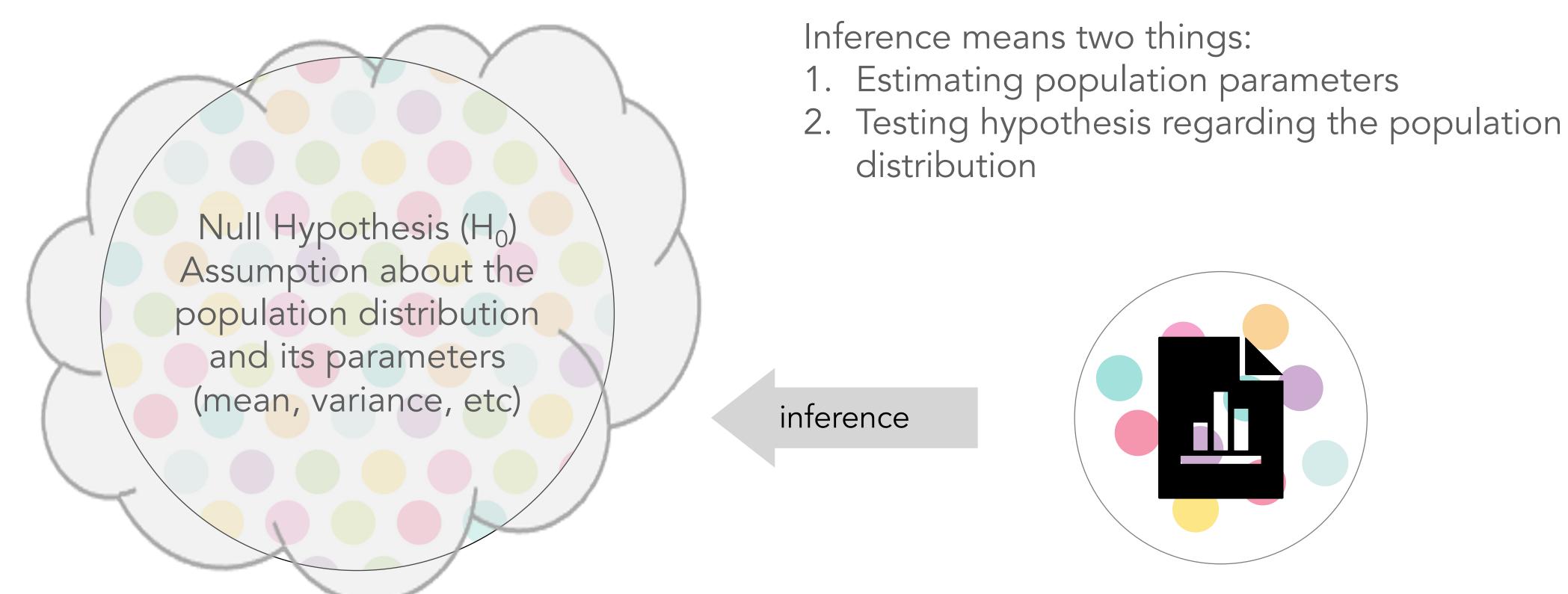
- Experimental Design
- Statistical Concepts
- Statistical aspects of bulk RNA-seq analysis

BASICS ON INFERENTIAL STATISTICS AND HYPOTHESIS TESTING



- Two important parameters
 - Mean
 - Variance
- Population mean and variance unknow and are constants
- Estimated using sample
- Estimated mean and variance used for inferring population parameters

BASICS ON INFERENTIAL STATISTICS AND HYPOTHESIS TESTING

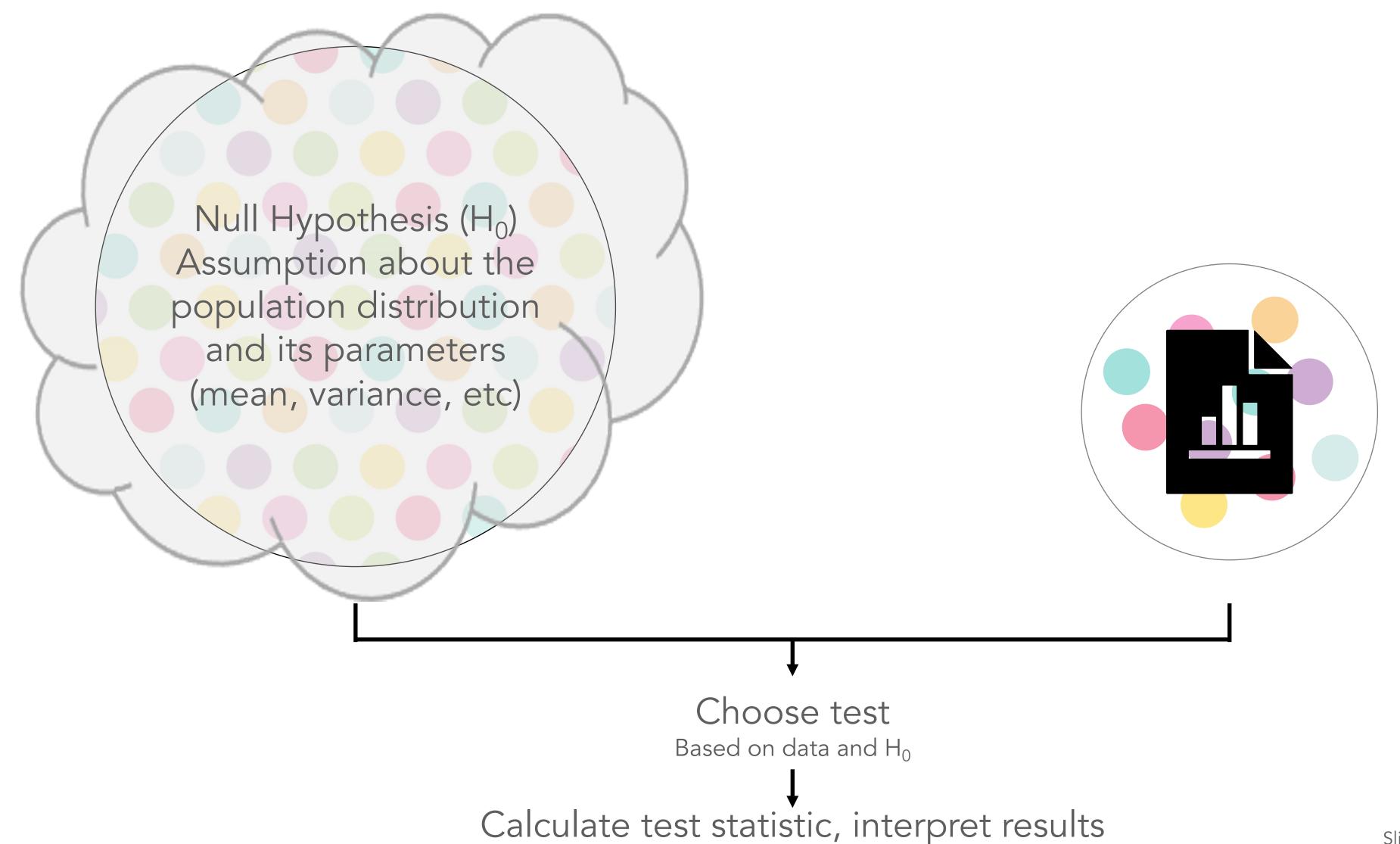


Population: the complete set of individuals that we are interested in

Sample: smaller set of individuals that is representative of the population

Variable: what we are interested in measuring

BASICS ON INFERENTIAL STATISTICS AND HYPOTHESIS TESTING

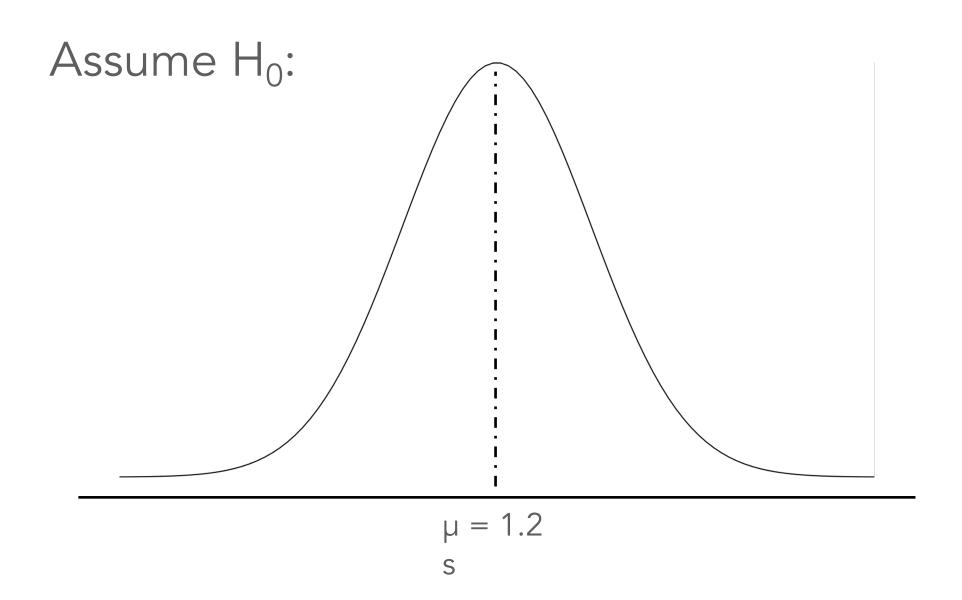


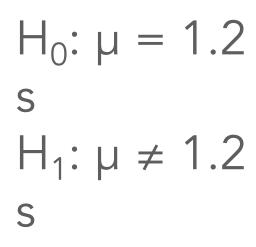
A neurologist is testing the effect of a drug on response time by injecting 100 rats with a unit dose of the drug subjecting each to neurological stimulus and recording its response time. The neurologist knows that the mean response time for rats not injected with the drug is 1.2 seconds. The mean of the 100 injected rats response times is 1.05 seconds with the sample standard deviation of 0.5 seconds. Do you think that the drug has an effect on response time?

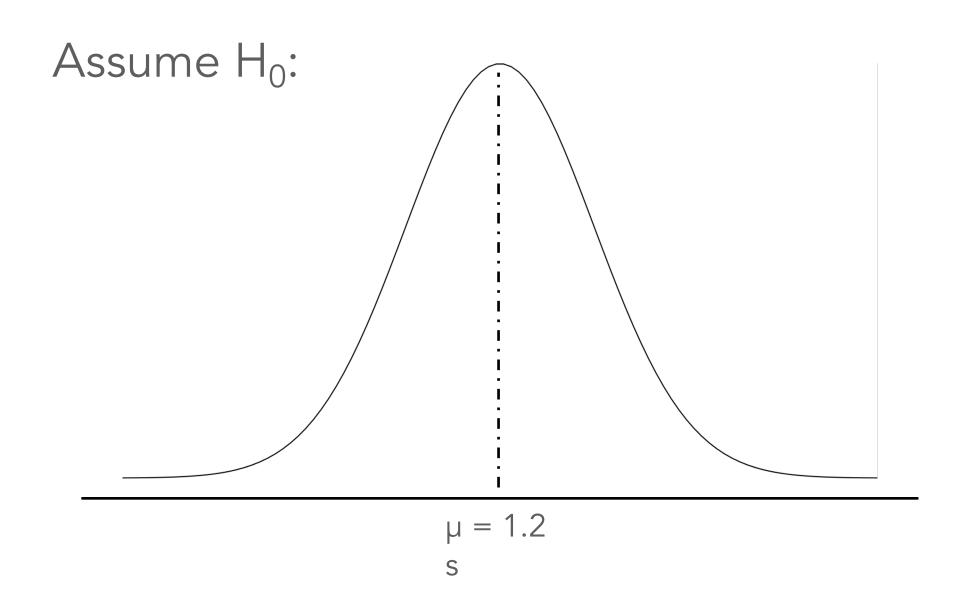
H₀: Drug has no effect on response time

H₁: Drug has an effect on response time

$$H_0$$
: $\mu = 1.2$
 H_1 : $\mu \neq 1.2$
 H_1 : $\mu \neq 1.2$

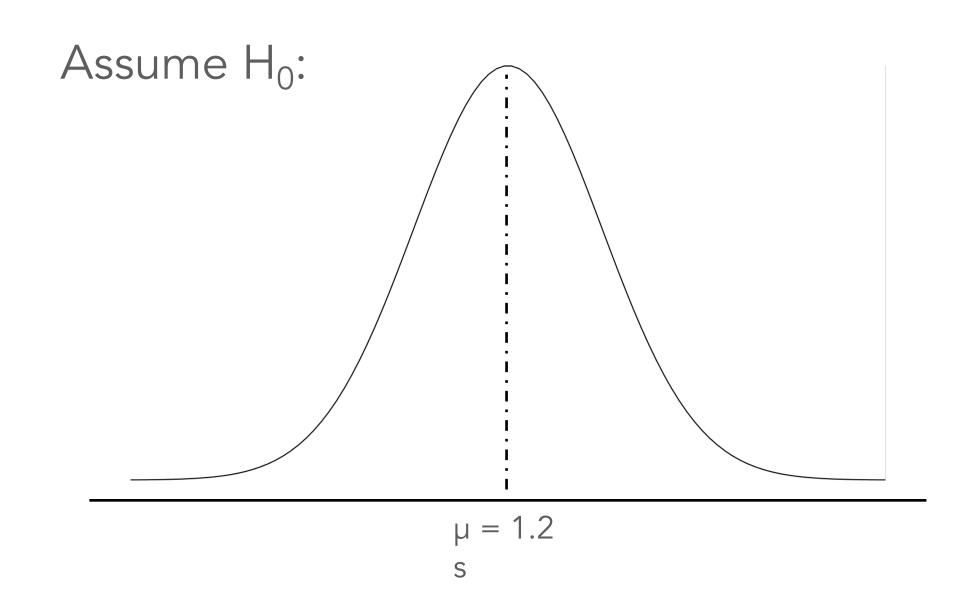




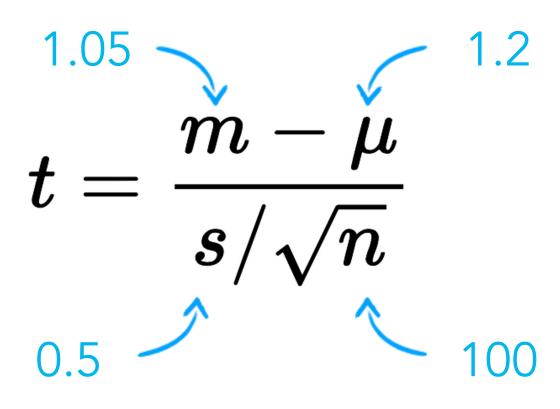


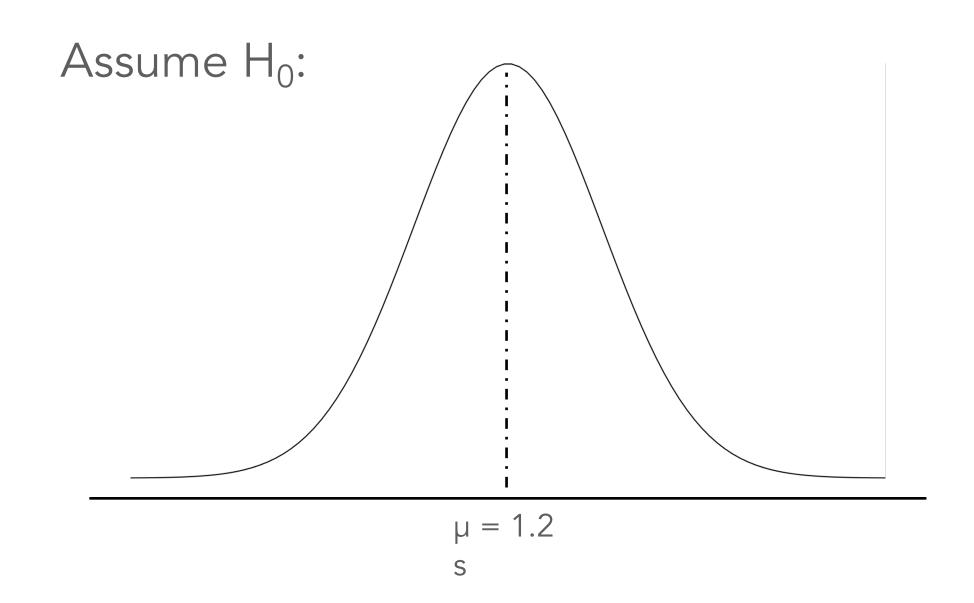
$$H_0$$
: $\mu = 1.2$
 S
 H_1 : $\mu \neq 1.2$
 S
Calculate test
statistic

$$t=rac{m-\mu}{s/\sqrt{n}}$$



$$H_0$$
: $\mu = 1.2$
 S
 H_1 : $\mu \neq 1.2$
 S
Calculate test
statistic

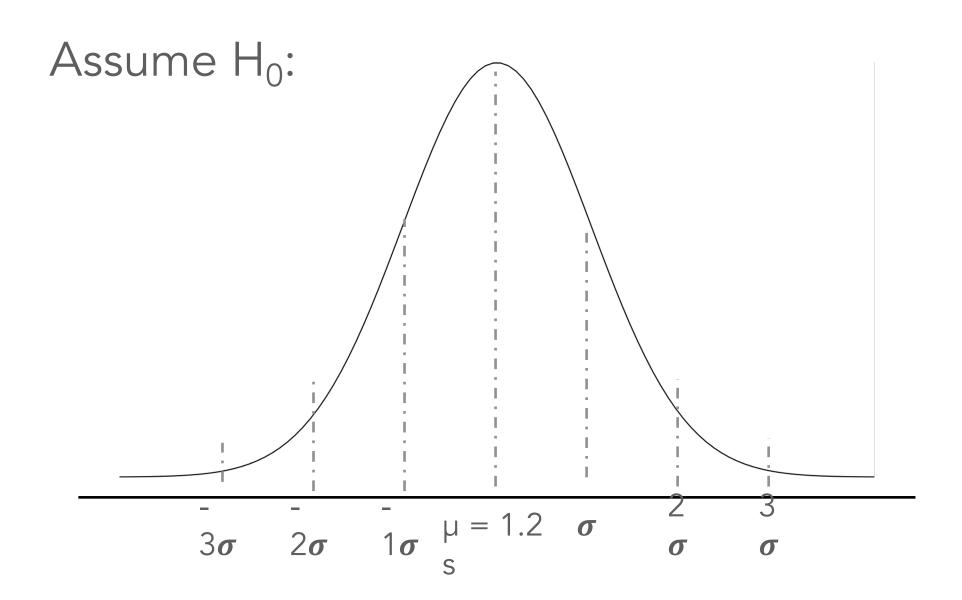




$$H_0$$
: $\mu = 1.2$
 S
 H_1 : $\mu \neq 1.2$
 S
Calculate test
statistic

$$\frac{\pi}{s} = \frac{m - \mu}{s / \sqrt{n}} = -3$$

A neurologist is testing the effect of a drug on response time by injecting 100 rats with a unit dose of the drug subjecting each to neurological stimulus and recording its response time. The neurologist knows that the mean response time for rats not injected with the drug is 1.2 seconds. The mean of the 100 injected rats response times is 1.05 seconds with the sample standard deviation of 0.5 seconds. Do you think that the drug has an effect on response time?

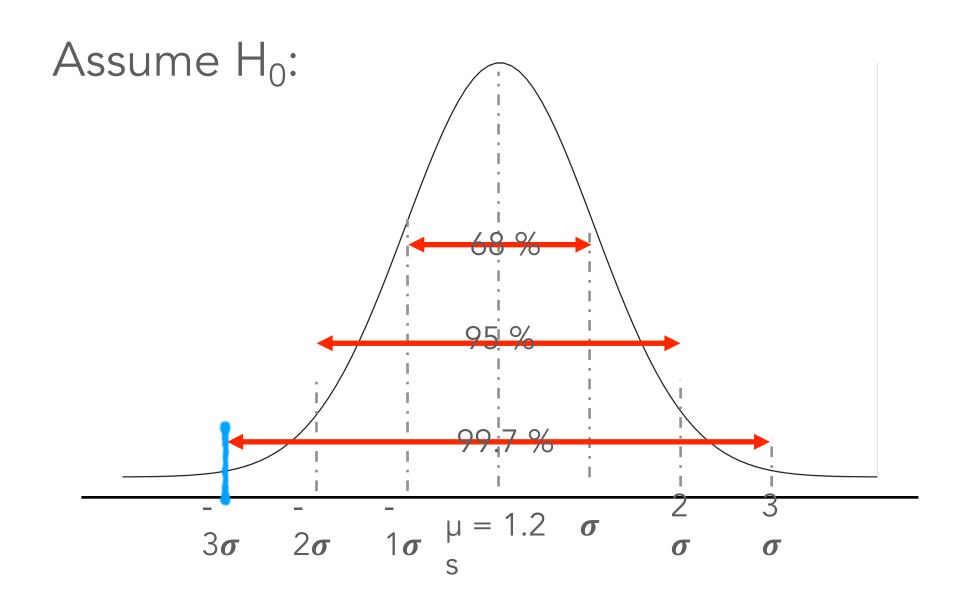


$$H_0$$
: $\mu = 1.2$
 S
 H_1 : $\mu \neq 1.2$
 S
Calculate test
statistic

$$t = \frac{m - \mu}{s / \sqrt{n}} = -3$$

This means that the sample mean (1.05) is 3 standard deviations away from the mean

A neurologist is testing the effect of a drug on response time by injecting 100 rats with a unit dose of the drug subjecting each to neurological stimulus and recording its response time. The neurologist knows that the mean response time for rats not injected with the drug is 1.2 seconds. The mean of the 100 injected rats response times is 1.05 seconds with the sample standard deviation of 0.5 seconds. Do you think that the drug has an effect on response time?



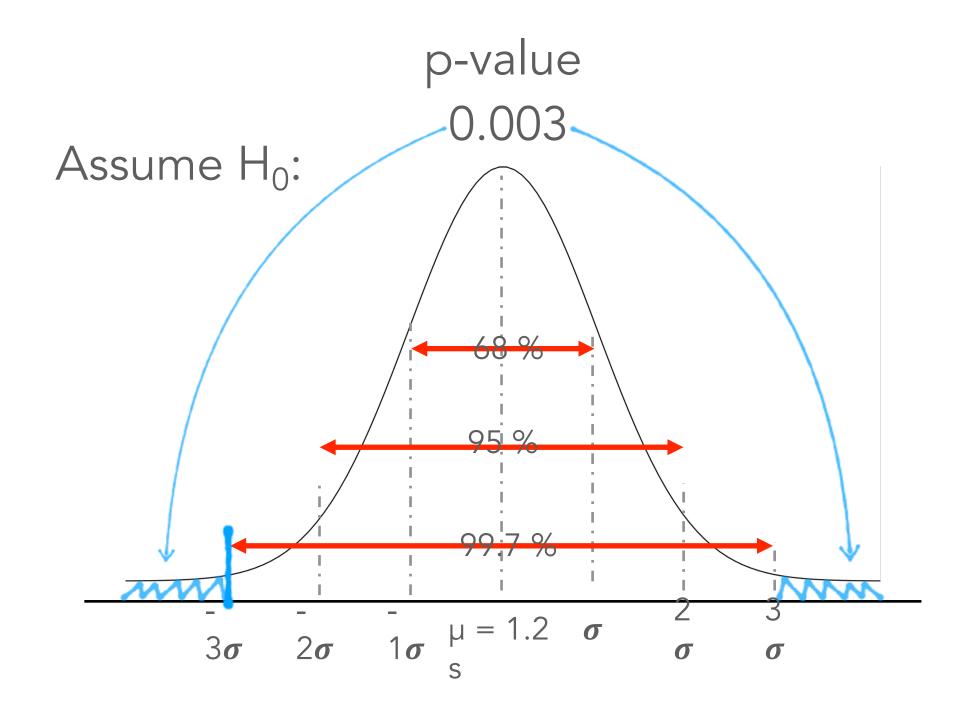
 H_0 : $\mu = 1.2$ S H_1 : $\mu \neq 1.2$ SCalculate test statistic

$$t = \frac{m - \mu}{s / \sqrt{n}} = -3$$

This means that the sample mean (1.05) is 3 standard deviations away from the mean

What is the probability of observing a test statistic as extreme as 1.05?

A neurologist is testing the effect of a drug on response time by injecting 100 rats with a unit dose of the drug subjecting each to neurological stimulus and recording its response time. The neurologist knows that the mean response time for rats not injected with the drug is 1.2 seconds. The mean of the 100 injected rats response times is 1.05 seconds with the sample standard deviation of 0.5 seconds. Do you think that the drug has an effect on response time?



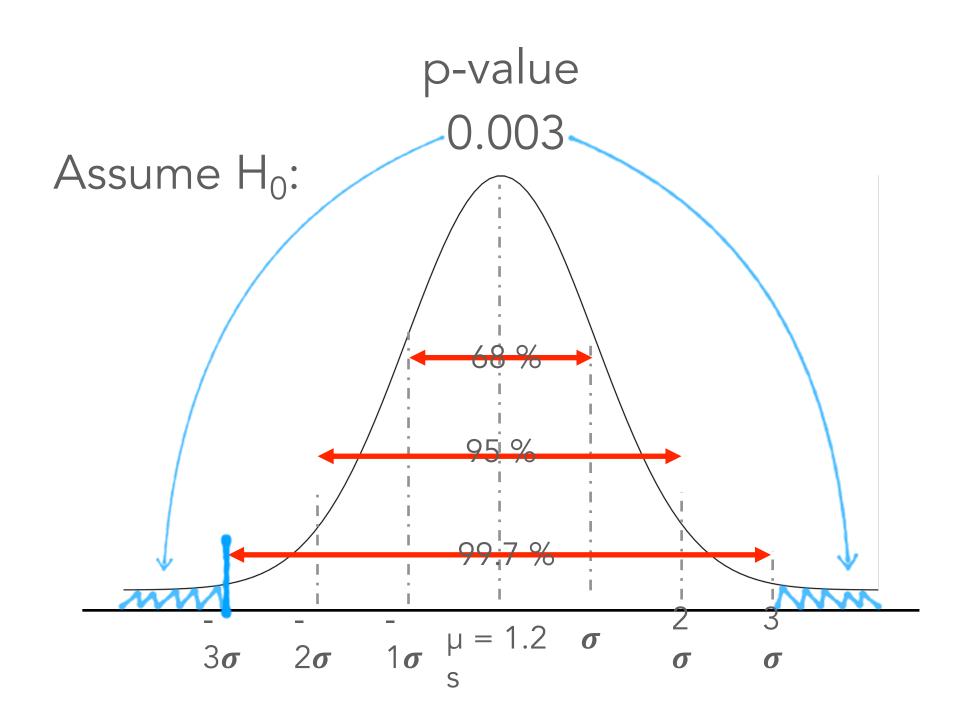
$$H_0$$
: $\mu = 1.2$
 S
 H_1 : $\mu \neq 1.2$
 S
Calculate test
statistic

$$t=rac{m-\mu}{s/\sqrt{n}}=-3$$

This means that the sample mean (1.05) is 3 standard deviations away from the mean

What is the probability of observing a test statistic as extreme as 1.05?

A neurologist is testing the effect of a drug on response time by injecting 100 rats with a unit dose of the drug subjecting each to neurological stimulus and recording its response time. The neurologist knows that the mean response time for rats not injected with the drug is 1.2 seconds. The mean of the 100 injected rats response times is 1.05 seconds with the sample standard deviation of 0.5 seconds. Do you think that the drug has an effect on response time?



$$H_0$$
: $\mu = 1.2$
 S
 H_1 : $\mu \neq 1.2$
 S
Calculate test
statistic

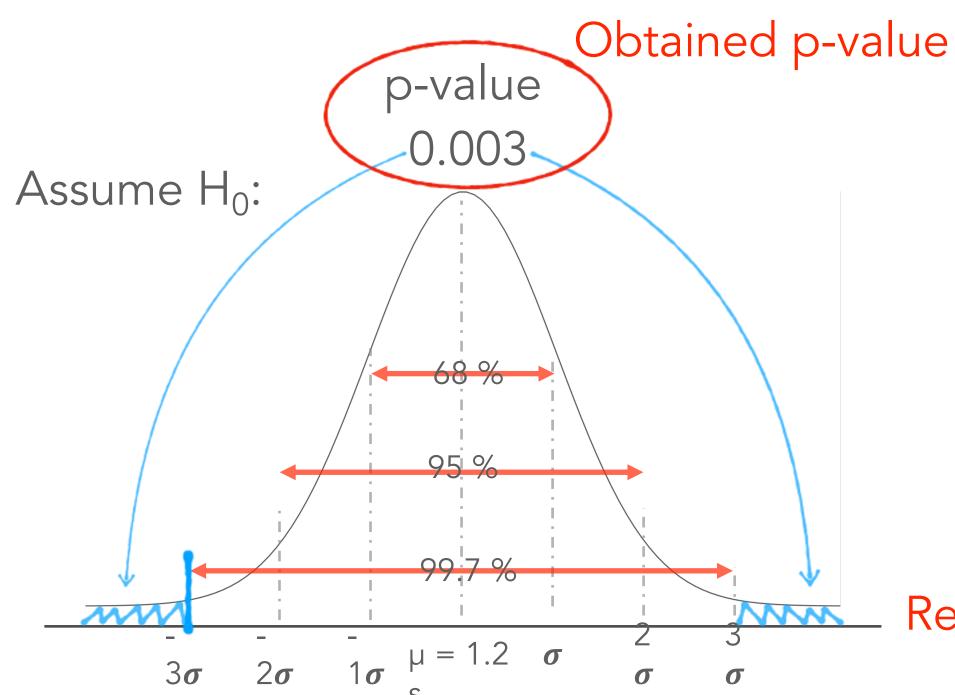
$$t = \frac{m - \mu}{s / \sqrt{n}} = -3$$

This means that the sample mean (1.05) is 3 standard deviations away from the mean

What is the probability of observing a test statistic as extreme as 1.05?

We reject the null hypothesis!

A neurologist is testing the effect of a drug on response time by injecting 100 rats with a unit dose of the drug subjecting each to neurological stimulus and recording its response time. The neurologist knows that the mean response time for rats not injected with the drug is 1.2 seconds. The mean of the 100 injected rats response times is 1.05 seconds with the sample standard deviation of 0.5 seconds. Do you think that the drug has an effect on response time?



Constructed the null and alternative hypothesis about the population

Calculate test statistic

 H_1 : $\mu \neq 1.2$

Calculated test statistic

$$t = \frac{m - \mu}{s / \sqrt{n}} = -3$$

This means that the sample mean (1.05) is 3 standard deviations away from the mean

What is the probability of observing a test statistic as extreme as 1.05?

Reached a conclusion

We reject the null hypothesis!

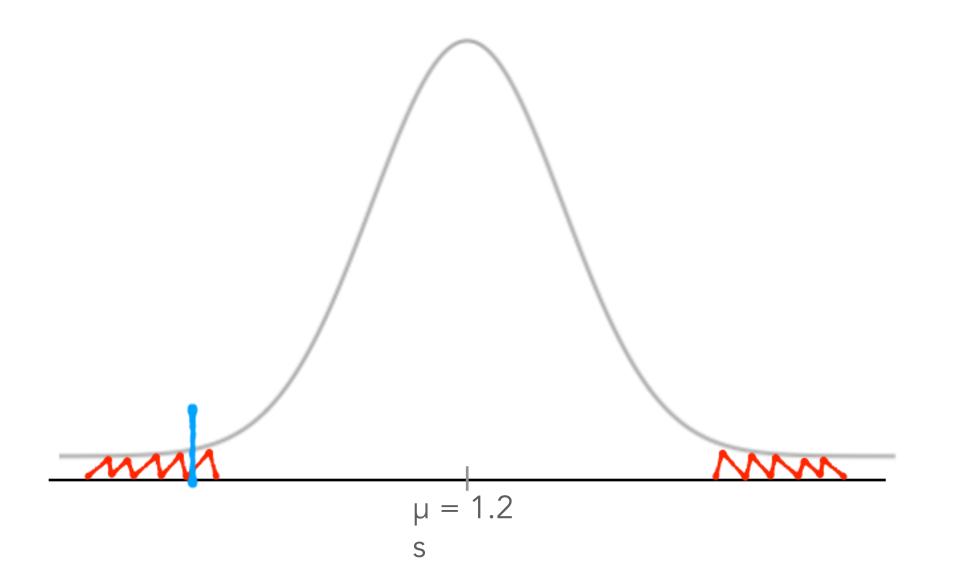
KEY CONCEPTS - HYPOTHESIS TESTING

- All statistical tests are based on assumptions!
- All statistics can be wrong
- Statistical tests are probabilistic in nature
- There is always a chance that the result is wrong (even when all assumptions met perfectly):
 - Either significant result when no difference (Type I),
 - Or insignificant results when there is an actual difference (Type II)

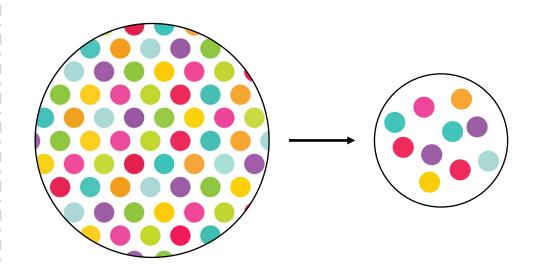
TYPE I AND TYPE II ERRORS

```
H_0: \mu = 1.2 s H_1: \mu \neq 1.2 S if p-value > \alpha \rightarrow do not reject H_0 if p-value < \alpha \rightarrow reject H_0 in favour of H_1
```

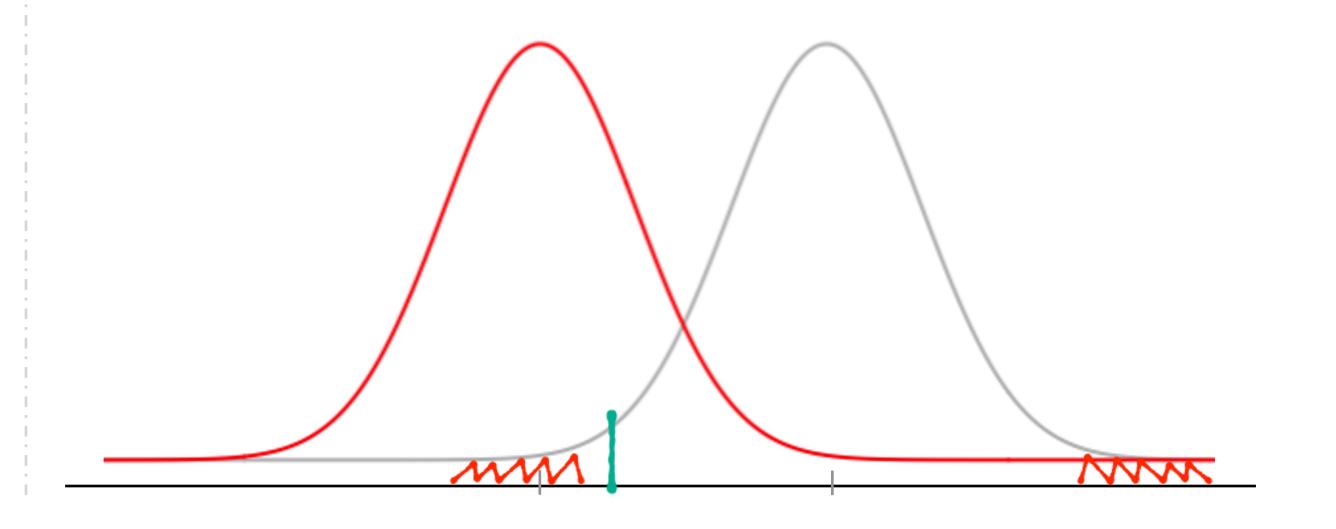
 α =0.05 \rightarrow the type I error, the probability of rejecting H_0 when H_0 is correct



Suppose H₁ true:



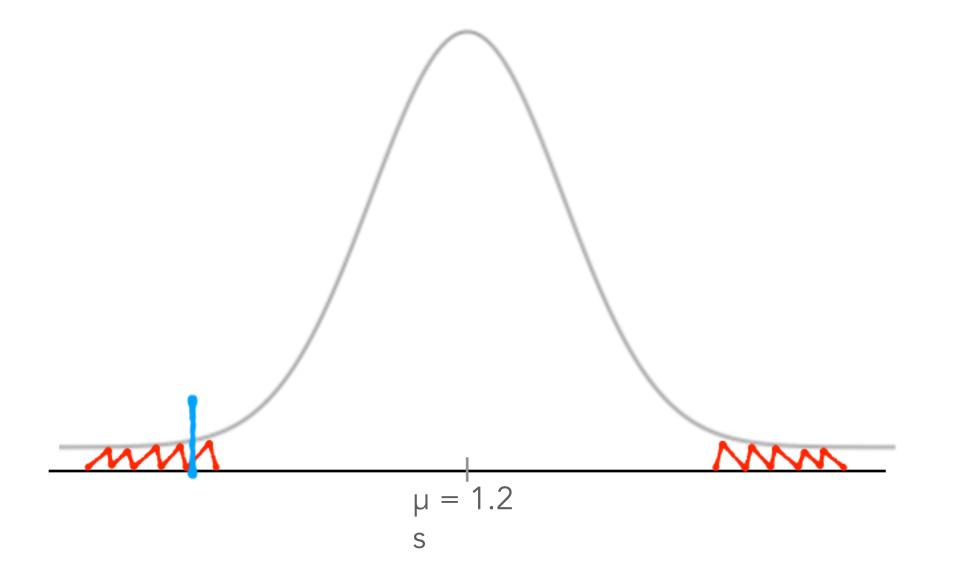
Depending on your sampling, you might fail to reject H₀



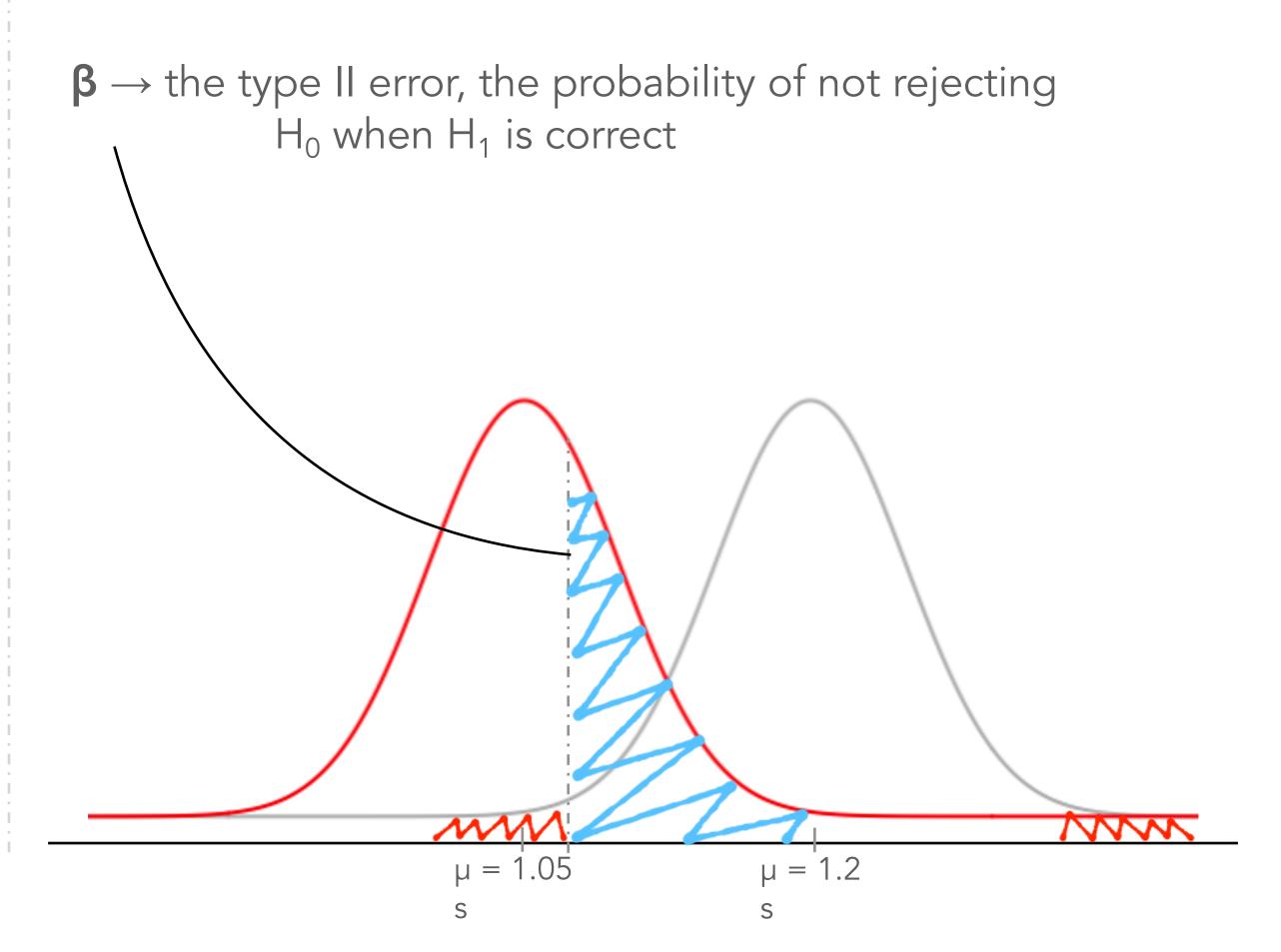
TYPE I AND TYPE II ERRORS

```
H_0: \mu = 1.2 s H_1: \mu \neq 1.2 S if p-value > \alpha \rightarrow do not reject H_0 if p-value < \alpha \rightarrow reject H_0 in favour of H_1
```

 α =0.05 \rightarrow the type I error, the probability of rejecting H_0 when H_0 is correct



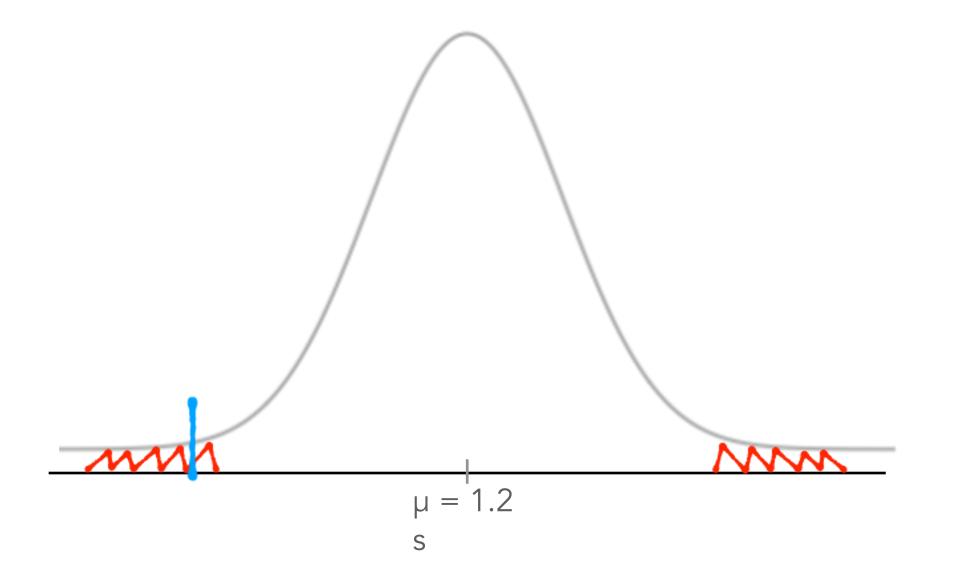
Suppose H₁ true:



TYPE I AND TYPE II ERRORS

```
H_0: \mu = 1.2 s H_1: \mu \neq 1.2 S if p-value > \alpha \rightarrow do not reject H_0 if p-value < \alpha \rightarrow reject H_0 in favour of H_1
```

 $\alpha{=}0.05 \rightarrow the \ type \ I \ error, \ the \ probability \ of \ rejecting \ H_0 \ when \ H_0 \ is \ correct$

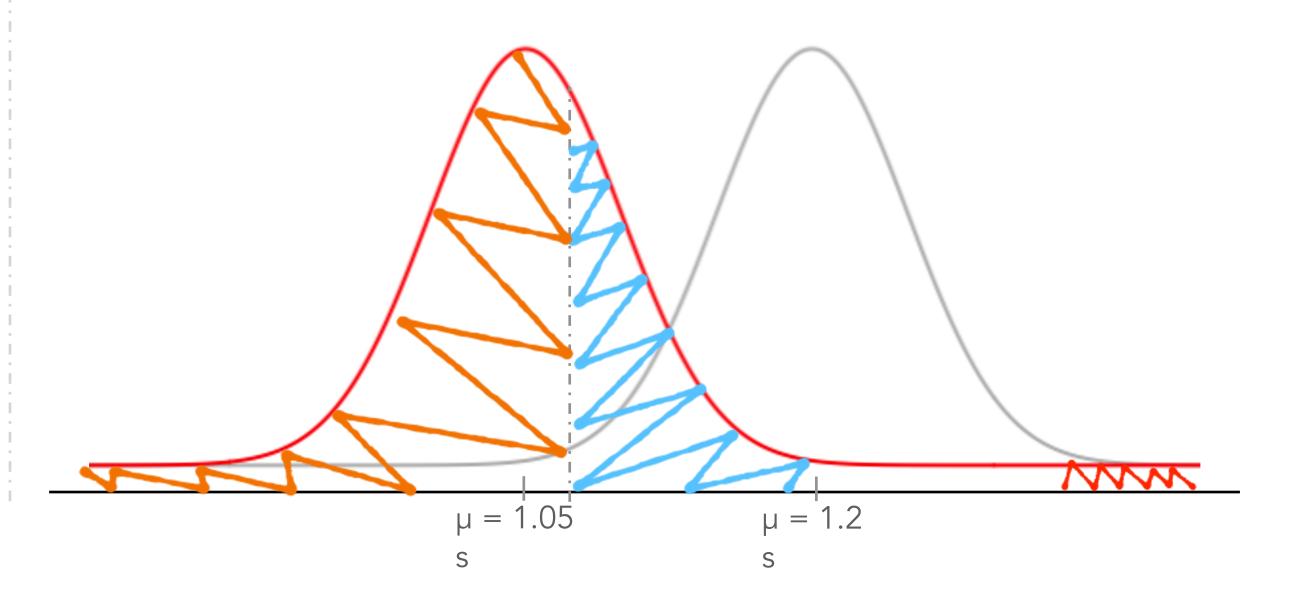


Suppose H₁ true:

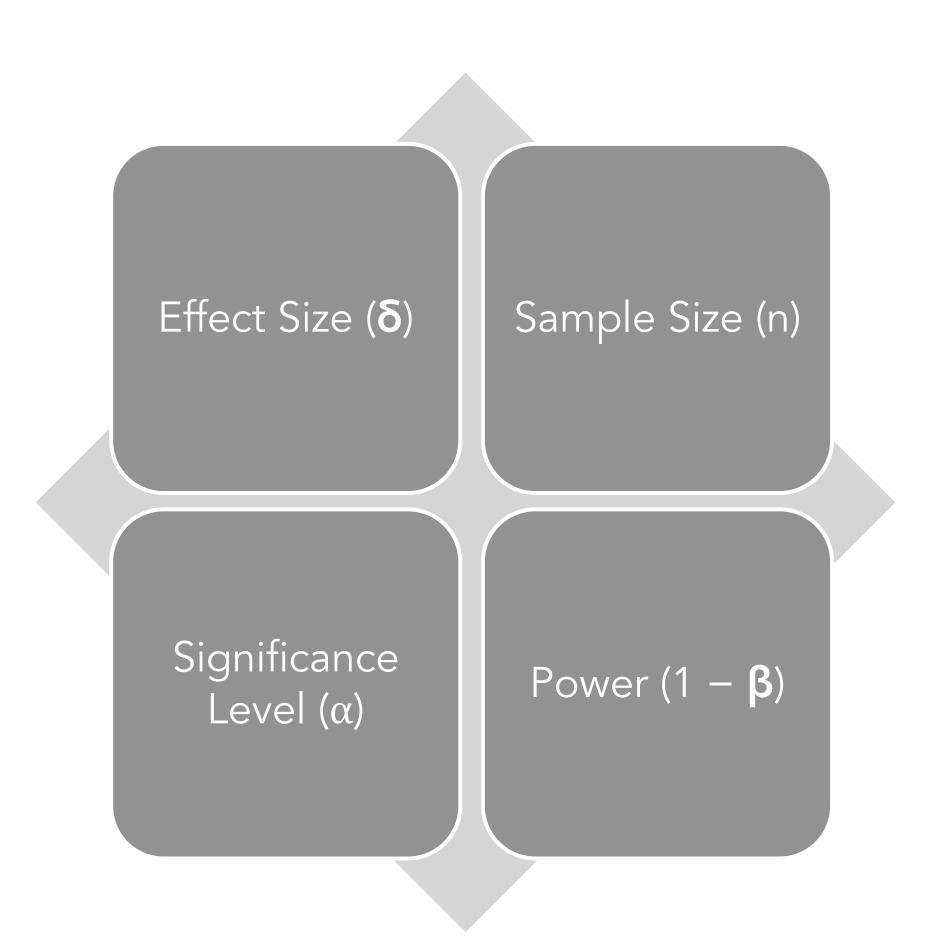
 $\beta \rightarrow$ the type II error, the probability of not rejecting

H₀ when H₁ is correct

1- β — Power is the probability that we actually detect an effect that exists

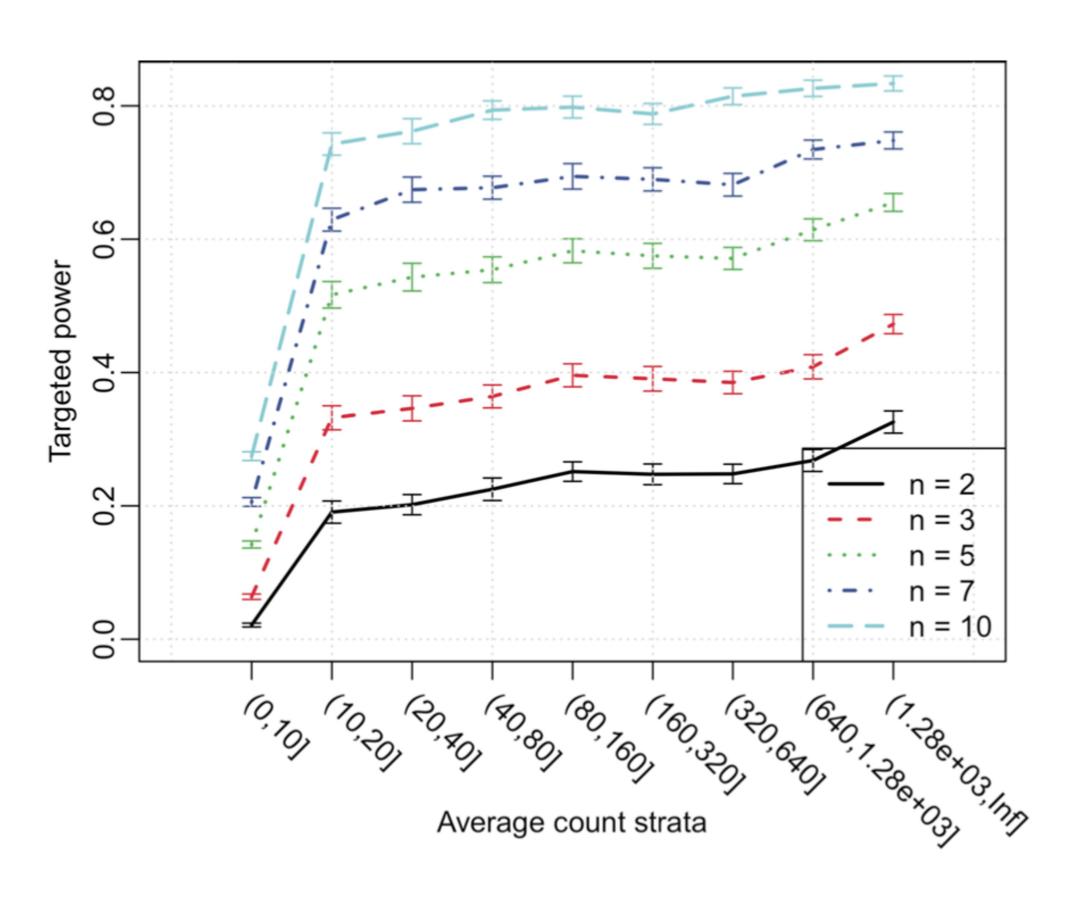


POWER ANALYSIS



- The four concepts are linked
- If we know three, we can work out the forth
- Power calculation: Aim is to define the probability (1- β) to detect an effect size of interest (δ) at the α level with a sample size of n biological replicates
- Sample size calculation: Aim is to define the sample size (n) allowing to detect an effect size of interest (δ) at the α level with a given probability (1 β).

POWER ANALYSIS IN DIFFERENTIAL EXPRESSION ANALYSIS



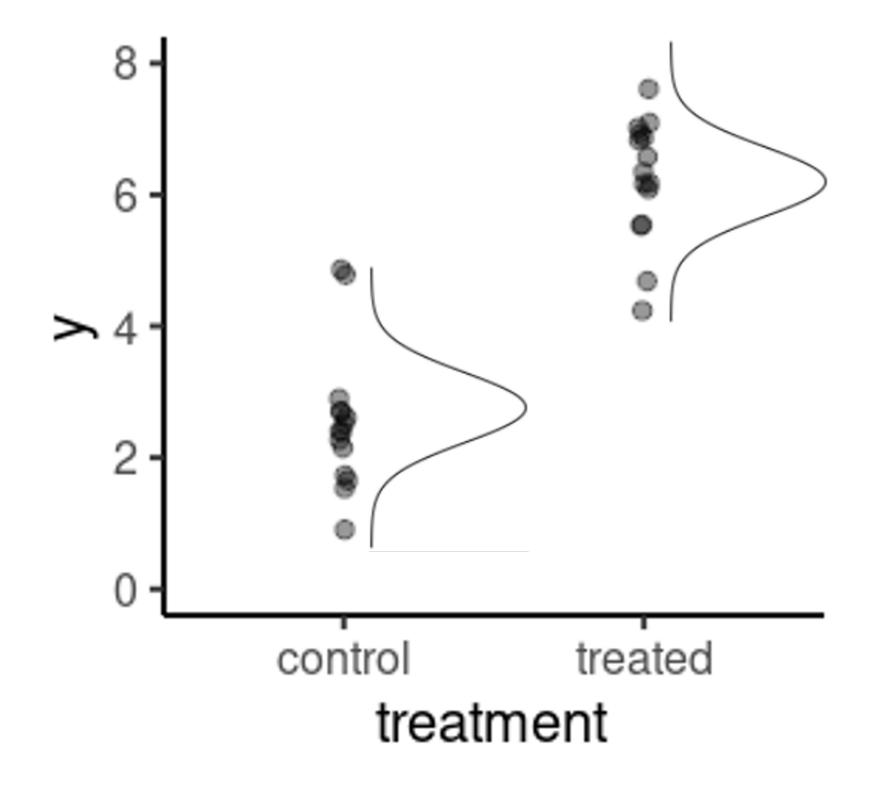
(Wu, Wang and Wu (2015))

OUTLINE

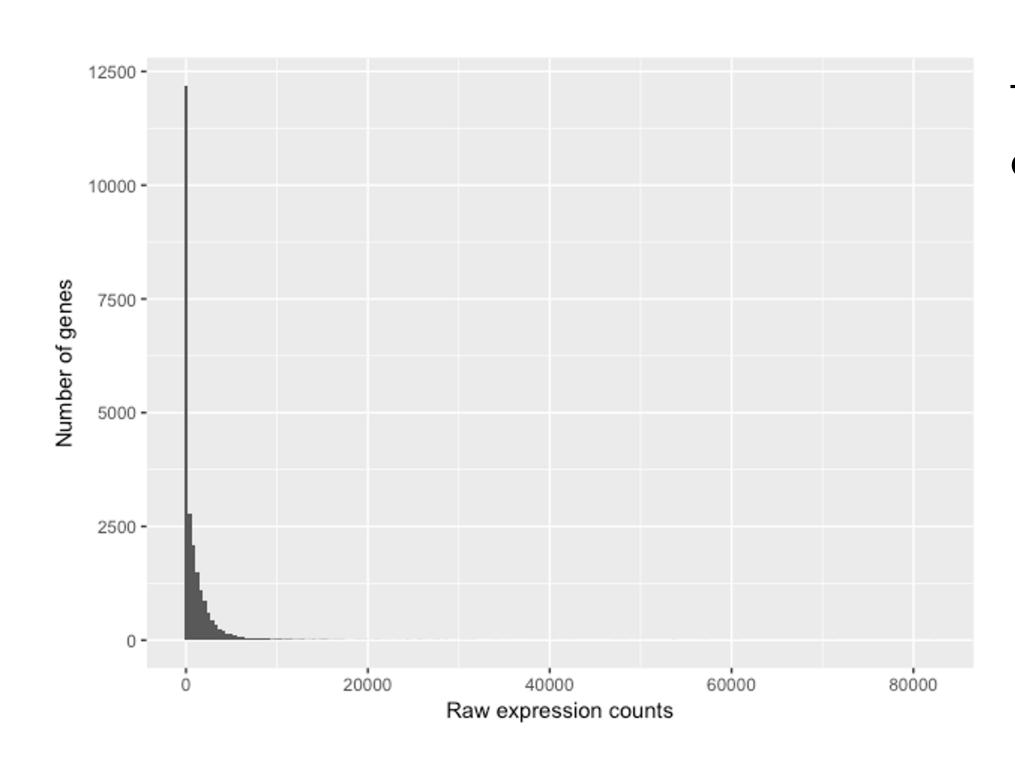
- Experimental Design
- Statistical Concepts Bite size statistics
- Statistical aspects of bulk RNA-seq analysis

Linear Modeling

Model the expression of each gene as linear combination of explanatory factors (eg. treatment, age, sex, etc.)



Characteristics of RNA-seq data

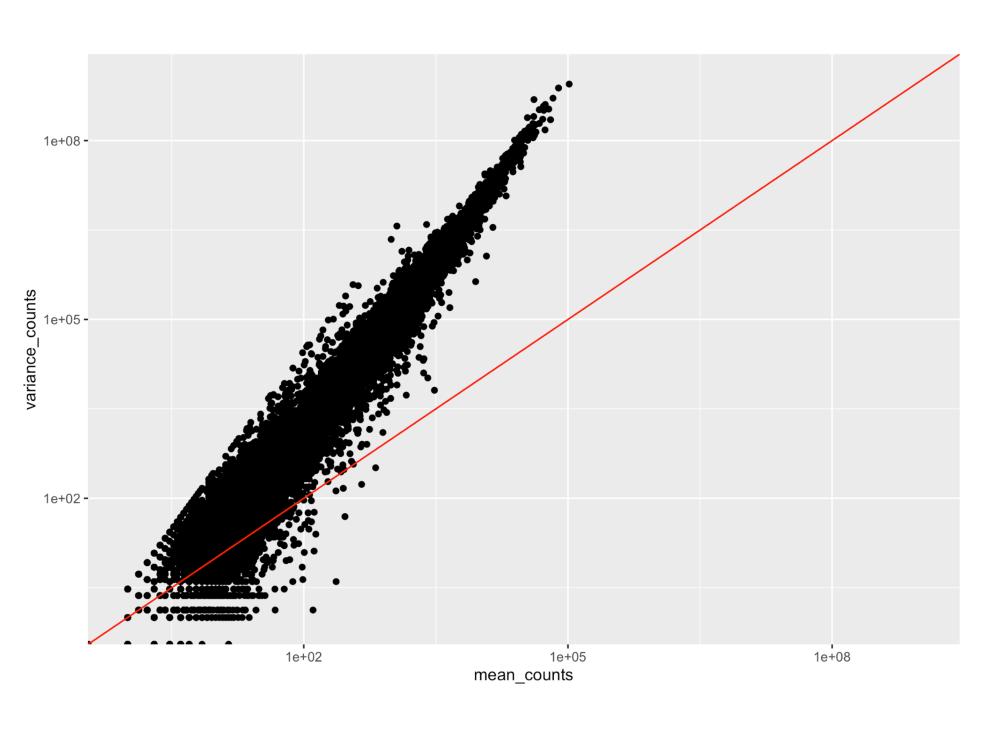


This plot illustrates some common features of RNA-seq count data:

- a low number of counts associated with a large proportion of genes
- a long right tail due to the lack of any upper limit for expression
- large dynamic range

Looking at the shape of the histogram, we see that it is not normally distributed.

STATISTICAL ASPECTS OF DIFFERENTIAL EXPRESSION ANALYSIS. Characteristics of RNA-seq data



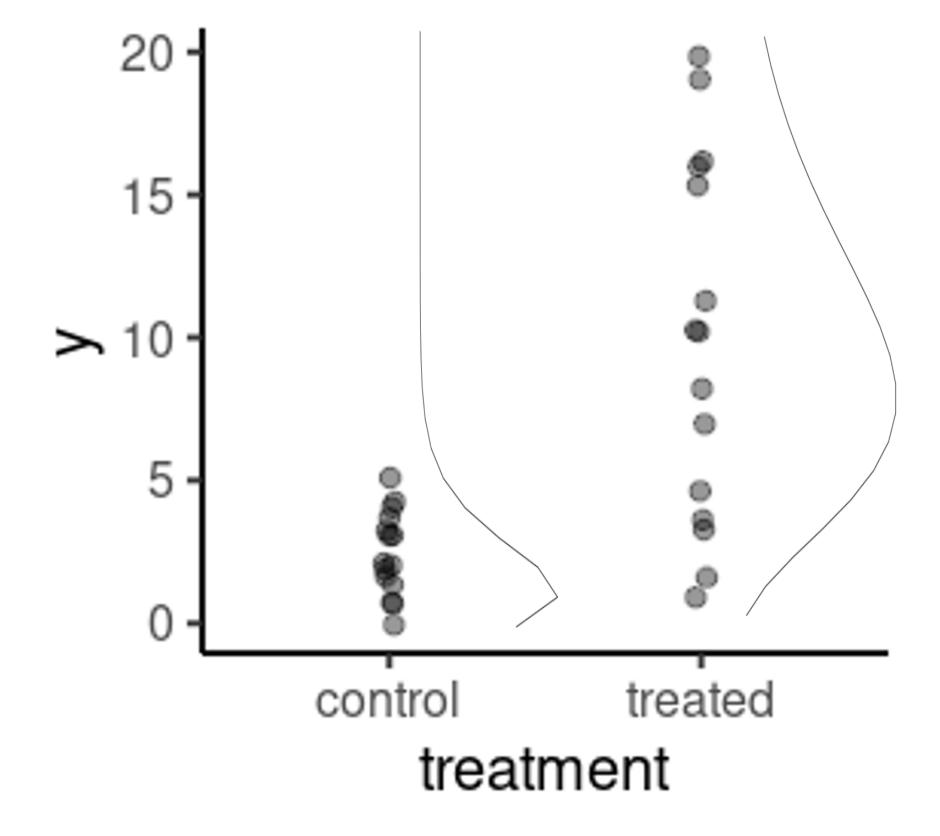
To assess the properties of the data we are working with, we can look at the mean-variance relationship.

For the genes with high mean expression, the variance across replicates tends to be greater than the mean (scatter is above the red line).

Essentially, the Negative Binomial is a good approximation for data where the mean < variance, as is the case with RNA-Seq count data.

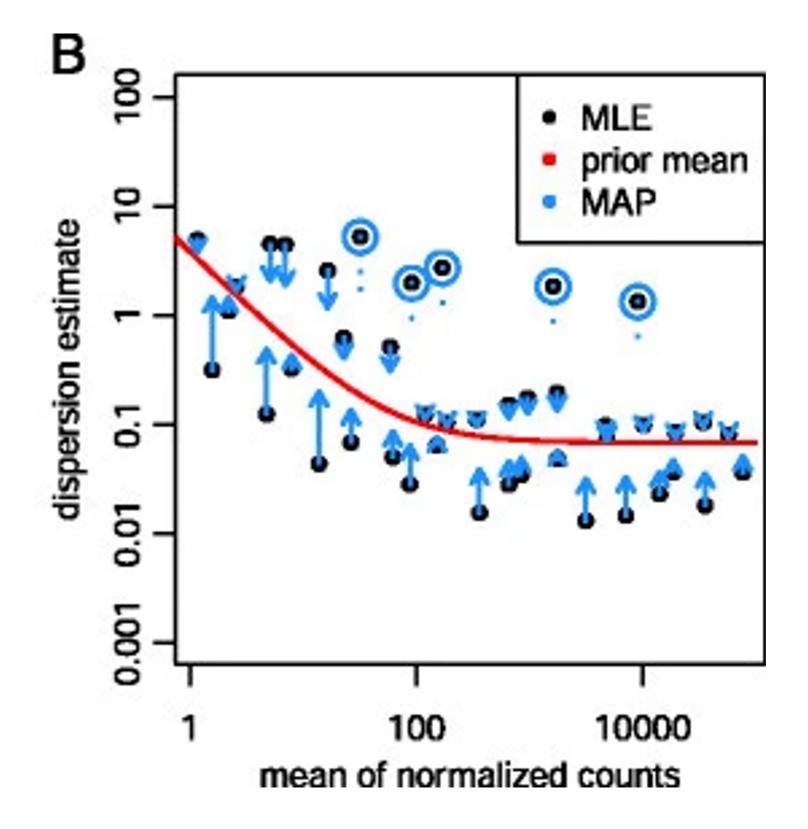
Linear Modeling

Model the expression of each gene as linear combination of explanatory factors (eg. treatment, age, sex, etc.)



Linear Modeling

Model the expression of each gene as linear combination of explanatory factors (eg. treatment, age, sex, etc.)



Linear Modeling

$$Counts \sim NB(\mu, \phi)$$
 $\mu = sq$

$$log2(q) = \beta_0 + \beta_1 * treatment + \beta_2 * age + \dots$$

counts - expression of the gene

 β_i - parameters we want to estimate from the data

 $oldsymbol{eta}_0$ - the "intercept" (the value of expression when all other parameters are set at a reference level)

φ - the "dispersion" (uncertainty) of our model (also estimated from the data)

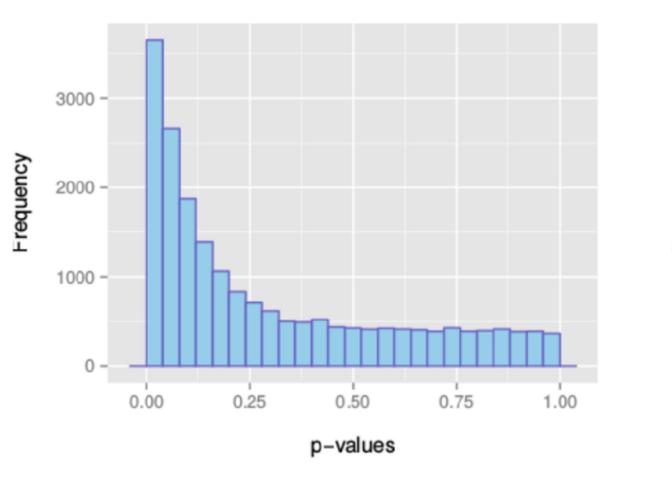
s - scaling factor (sequencing depth and transcript composition)

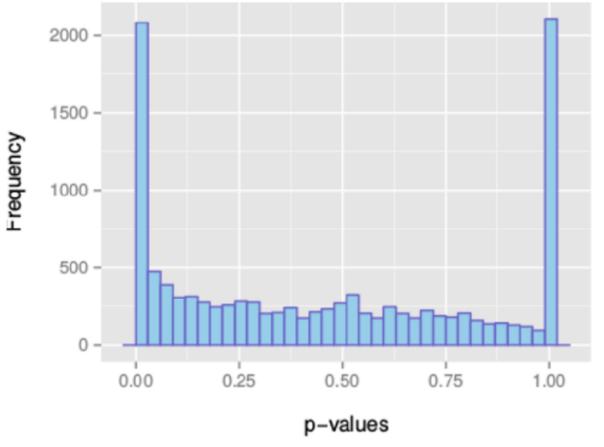
Summary:

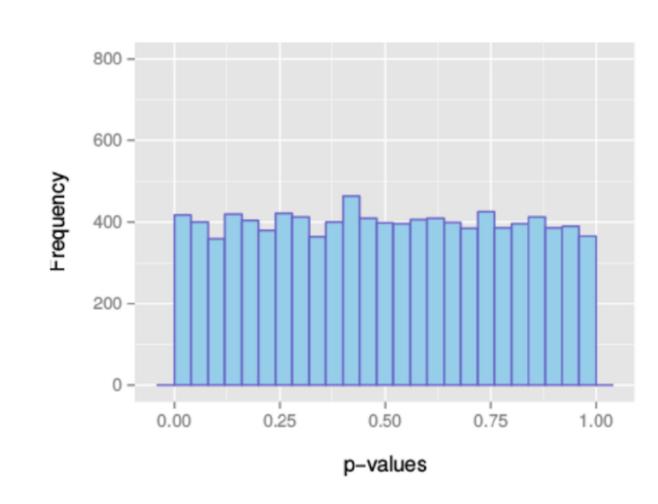
- Use negative binomial linear regression to model gene expression in RNA-seq
- Calculate size factors for each sample to account for differences in sequencing depth and transcript composition between samples
- Estimate dispersion for each gene by "borrowing" information across genes for more precise estimates when sample sizes are small (as is typical in RNA-seq experiments)
- Estimate model **coefficients** which are used to define test hypothesis ($\beta_i = 0$)

P-VALUE HISTOGRAMS

Examples of expected overall distribution



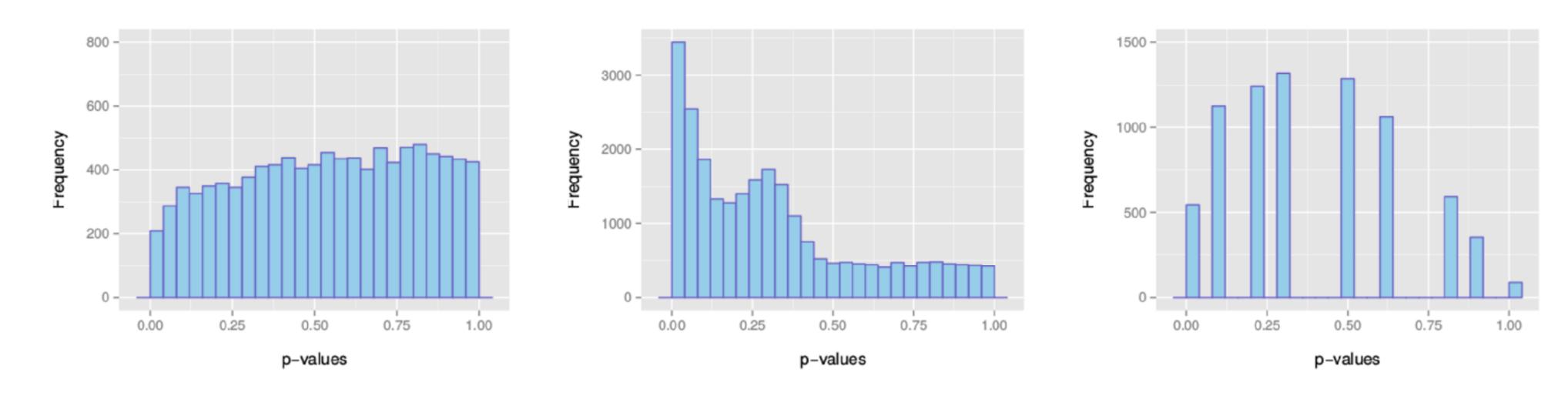




- (a): the most desirable shape
- (b): very low counts genes usually have large p-values
- (c) : do not expect positive tests after correction

P-VALUE HISTOGRAMS

Examples of unexpected overall distribution



- (a): indicates a batch effect (confounding hidden variables)
- (b) : the test statistics may be inappropriate (due to strong correlation structure for instance)
- (c) : discrete distribution of p-values : unexpected

MULTIPLICITY CORRECTION

- A gene with a significance cut-off of $\mathbf{a} = 0.05$, means there is a 5% chance it is a false positive.
- If we test for 20,000 genes for differential expression at $\mathbf{a} = 0.05$, we would expect to find 1,000 genes by chance
- If we found 3000 genes to be differentially expressed total, roughly one third of our genes are false positives!
- The more genes we test, the more we inflate the false positive rate. This is the multiple testing problem.

MULTIPLICITY CORRECTION

- Bonferroni: The adjusted p-value is calculated by: \mathbf{a}^k (k = total number of tests). This is a very conservative approach
- FDR/Benjamini-Hochberg: Benjamini and Hochberg (1995) defined the concept of FDR and created an algorithm to control the expected FDR below a specified level given a list of independent p-values.

CONCLUSIONS

Assumptions assumptions