## Models and contrasts in R/DESeq2



UNIVERSITY OF in collaboration with: CAMBRIDGE cancer Bioinformatics Training Facility

## Outline

- How to interpret linear models coefficients
- categorical variables \& model matrix

- How to specify models in R using the "formula syntax"

$$
y \sim x
$$

- How to interpret the results of different model designs
- One factor, 3 levels
- Two factors, additive
- Two factors, interaction


- How DESeq2 reports its results and how to interpret them


## Linear Models in $\mathbf{R}$

A model is a simplified representation of how we think different variables relate to each other.

Linear models are the most commonly used in statistical inference.



## Linear Models in R | Categorical Variables



## Linear Models in R | Categorical Variables



## Linear Models in R | Categorical Variables



## Linear Models in R | Null Hypothesis Testing

How compatible is my data with a "boring" hypothesis?

Null hypothesis: $\beta_{1}=0$



Test statistic: $\quad \beta_{1} / \sigma_{\beta 1}$
(our estimate divided by the uncertainty in that estimate)

P-value calculated from the test statistic

- Low $p$-value indicates that the data are not very compatible with the null hypothesis.


## Linear Models in R | Null Hypothesis Testing

How compatible is my data with a "boring" hypothesis?

Null hypothesis: $\beta_{1}=0$



## Exercise 1

Test statistic: $\beta_{1} / \sigma_{\beta 1}$
(our estimate divided by the uncertainty in that estimate)
$P$-value calculated from the test statistic

- Low $p$-value indicates that the data are not very compatible with the null hypothesis.


## Linear Models in R | Model Specification

|  | x |
| :--- | :---: |
|  | <factor> |
| sample1 | A |
| sample2 | A |
| sample3 | A |
| sample4 | B |
| sample5 | B |
| sample6 | B |



Formula syntax in R :
outcome ~ predictors

## Linear Models in R | Model Specification

Formula syntax in R :
outcome ~ predictors


Model:

$$
\mathrm{Y}=\beta_{\mathrm{O}}+\beta_{1} \mathrm{X}_{\mathrm{B}}
$$

$\beta_{0}=$ average of the reference group
$\beta_{1}=$ difference to the reference group

## Linear Models in R | Model Specification

Formula syntax in R :
outcome ~ predictors


Model:

$$
\mathrm{Y}=\beta_{\mathrm{O}}+\beta_{1} \mathrm{X}_{\mathrm{B}}
$$

$\beta_{0}=$ average of the reference group $\beta_{1}=$ difference to the reference group

Example in R worksheet:
"Model Specification - Formula Syntax"

## Linear Models in R | Model Specification

Formula syntax in R :
outcome ~ predictors


Model:

$$
\mathrm{Y}=\beta_{\mathrm{O}}+\beta_{1} \mathrm{X}_{\mathrm{B}}
$$

$\beta_{0}=$ average of the reference group
$\beta_{1}=$ difference to the reference group


## Common Designs

One factor, 2 levels
One factor, 3 levels
Two factors



genotype

- MUT
- WT
- Define our model with formula syntax
- Categorical variables are encoded as indicator variables in a model matrix
- $\quad R$ does this for us
- Interpret coefficients to define hypothesis of interest


## Common Designs | One factor, 3 levels

|  | drug |
| :--- | :--- |
| sample1 | Pink |
| sample2 | Pink |
| sample3 | Pink |
| sample4 | Yellow |
| sample5 | Yellow |
| sample6 | Yellow |
| sample7 | White |
| sample8 | White |
| sample9 | White |

Null hypothesis:

Pink vs White
$\beta_{1}=0$
Yellow vs White
$\beta_{2}=0$
Yellow vs Pink
$\beta_{2}-\beta_{1}=0$

Design:
~ drug

Model matrix

|  | (Intercept) | drugPink | drugYellow |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 |
| 2 | 1 | 1 | 0 |
| 3 | 1 | 1 | 0 |
| 4 | 1 | 0 | 1 |
| 5 | 1 | 0 | 1 |
| 6 | 1 | 0 | 1 |
| 7 | 1 | 0 | 0 |
| 8 | 1 | 0 | 0 |
| 9 | 1 | 0 | 0 |


$\operatorname{Expr}=\beta_{\mathrm{O}}+\beta_{1} \mathrm{drug}_{\text {Pink }}+\beta_{2} \mathrm{drug}_{\text {Yellow }}$


## Model Designs | Two factors - additive model



## Model Designs | Two factors - interaction model

|  | drug | genotype |
| :--- | :--- | :--- |
| sample1 | Pink | WT |
| sample2 | Pink | WT |
| sample3 | Pink | MUT |
| sample4 | Pink | MUT |
| sample5 | White | WT |
| sample6 | White | WT |
| sample7 | White | MUT |
| sample8 | White | MUT |

Design:

```
~ drug + genotype + drug:genotype
```

$\operatorname{Expr}=\beta_{\mathrm{O}}+\beta_{1}$ drug $_{\text {Pink }}+\beta_{2}$ genotype $_{\text {MUT }}+\beta_{3}$ drug $_{\text {Pinkgenotype }}^{\text {MUT }}$


Null hypothesis:
Pink vs White (WT)
$\beta_{1}=0$
Pink vs White (MUT)
$\beta_{1}+\beta_{3}=0$
WT vs MUT (White)
$\beta_{2}=0$
WT vs MUT (Pink)
$\beta_{2}+\beta_{3}=0$
Interaction ("Difference of differences"):
$\beta_{3}=0$

## Model Specification in DESeqz

- Create DESeqDataSet object
- Add model design:
design(dds) $\leftarrow ~$ treatment
- Fit the statistical model
dds $\leftarrow$ DESeq (dds)
- Check coefficients for hypothesis testing
 resultsNames(dds)


## Model Specification in DESeqz

- Create DESeqDataSet object
- Add model design:
design(dds)
$\leftarrow \sim$ treatment
- Fit the statistical model
dds $\leftarrow$ DESeq (dds)
- Check coefficients for hypothesis testing resultsNames(dds)

|  | Null Hypothesis |
| :---: | :---: |
| $B$ vs $A$ | $\beta_{1}=0$ |
| $C$ vs $A$ | $\beta_{2}=0$ |
| $C$ vs $B$ | $\beta_{2}-\beta_{1}=0$ |

DESeq coefficient names:

$$
\begin{aligned}
& \beta_{0} \rightarrow \text { Intercept } \\
& \beta_{1} \rightarrow \text { treatment_B_vs_A } \\
& \beta_{2} \rightarrow \text { treatment_C_vs_A }
\end{aligned}
$$

A B C

## Model Specification in DESeqz | Interpreting the Results

```
results(dds, contrast = list("treatment_B_vs_A"))
```

|  | baseMean log2FoldChange <br> <numeric> | <numeric> | <numeric> | <numeric> | <numeric> | <numeric> |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

baseMean $\rightarrow$ Mean across all samples
$\log 2 F o l d C h a n g e ~ \rightarrow \log _{2}(B / A)$ i.e. the difference between treatments
IfcSE $\rightarrow$ the standard error of the log2FoldChange
stat $\rightarrow$ the test statistic $=\log 2 F o l d C h a n g e / I f c S E$
pvalue $\rightarrow$ the $p$-value of the Wald test
padj $\rightarrow$ the $p$-value adjusted for multiple testing (false discovery rate)

## Model Specification in DESeqz | Likelihood-ratio Test

The default test in DESeq2 is the Wald test, testing for null hypothesis that LFC $=0$
And alternative is the Likelihood Ratio Test

$$
L R=-2 \ln \left(\frac{L\left(m_{1}\right)}{L\left(m_{2}\right)}\right)
$$



Example:

```
design(dds) \leftarrow ~ genotype + timepoint + genotype:timepoint
dds }\leftarrow DESeq(dds, test = "LRT"
    reduced = ~ genotype)
```


## Conclusions

- Differential expression tests are based on linear models, where the gene expression is modelled as an outcome of several variables of interest (e.g. treatment, genotype, infection status, etc.).
- Linear models use indicator or dummy variables to encode categorical variables in a model matrix.
- To define models in R/DESeq2 we use the formula syntax: ~ variables
- Some common models are:
- Single factor: ~ variable1
- Two factor, additive: ~ variable1 + variable2
- Two factor, interaction: ~ variable1 + variable2 + variable1:variable2
- Interpreting our model coefficients allows us to define hypothesis/comparisons/contrasts of interest.
- In DESeq2 we use the `results()` function to obtain the $\log 2$ (fold-change) in gene expression between groups of interest ("contrast").

