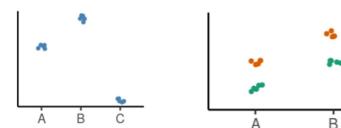
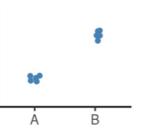
Models and contrasts in R/DESeq2

UNIVERSITY OF CAMBRIDGE

In collaboration with:



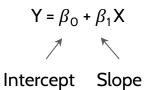
CAMBRIDGE CENTRE

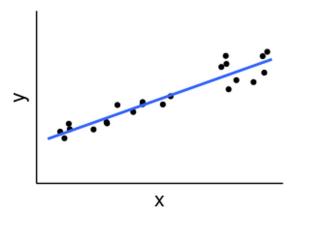

Bioinformatics Training Facility

Outline

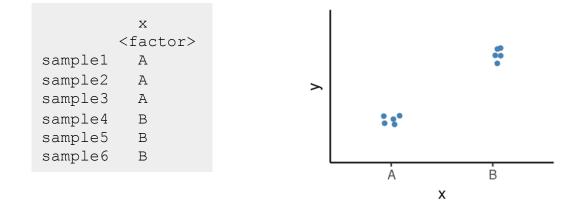
- How to interpret linear models coefficients
 - categorical variables & model matrix
- How to specify models in R using the "formula syntax"
- How to interpret the results of different model designs
 - One factor, 3 levels
 - Two factors, additive
 - \circ Two factors, interaction

• How *DESeq2* reports its results and how to interpret them

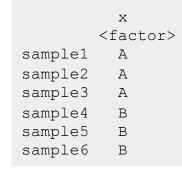


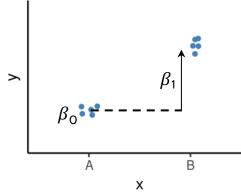

V ~ X

Linear Models in R


A model is a simplified representation of how we think different variables relate to each other.

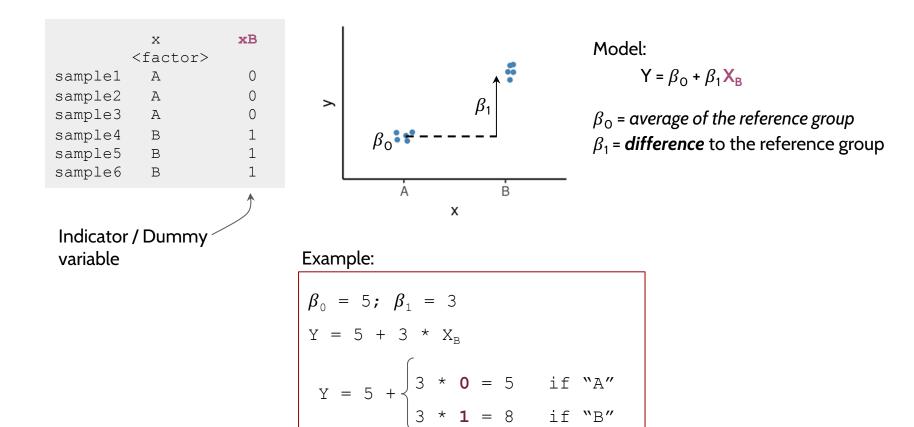
Linear models are the most commonly used in statistical inference.





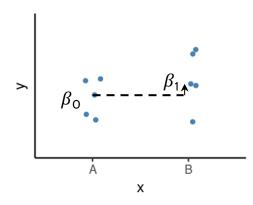
Linear Models in R | Categorical Variables

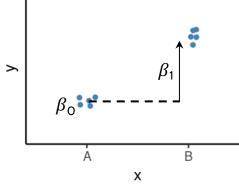
Linear Models in R | Categorical Variables



Model: Y = $\beta_0 + \beta_1 X_B$

 β_0 = average of the reference group β_1 = **difference** to the reference group


Linear Models in R | Categorical Variables



Linear Models in R | Null Hypothesis Testing

How compatible is my data with a "boring" hypothesis?

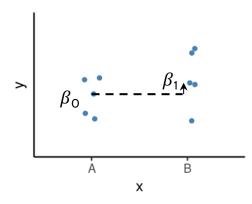
Null hypothesis: $\beta_1 = 0$

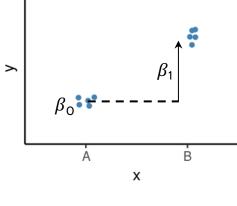
Model: Y = $\beta_0 + \beta_1 X_B$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Test statistic: $\beta_1 / \sigma_{\beta_1}$

(our estimate divided by the uncertainty in that estimate)


P-value calculated from the test statistic


• Low p-value indicates that the data are not very compatible with the null hypothesis.

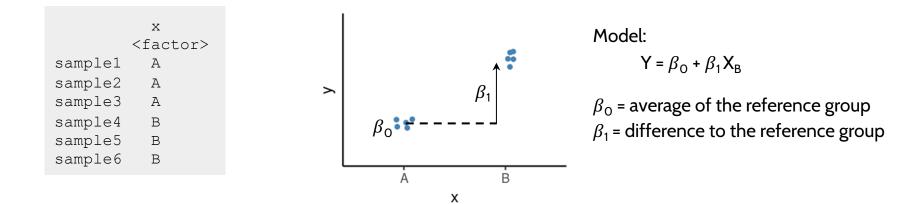
Linear Models in R | Null Hypothesis Testing

How compatible is my data with a "boring" hypothesis?

Null hypothesis: $\beta_1 = 0$

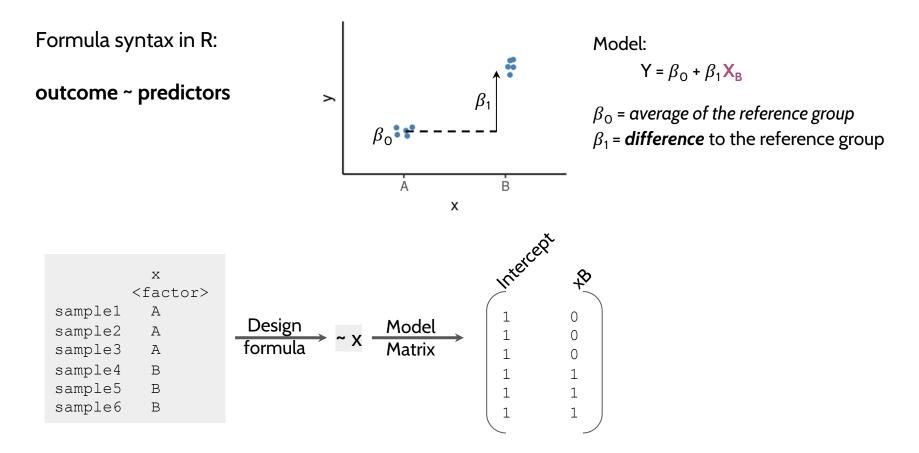
Model: Y = $\beta_0 + \beta_1 X_B$

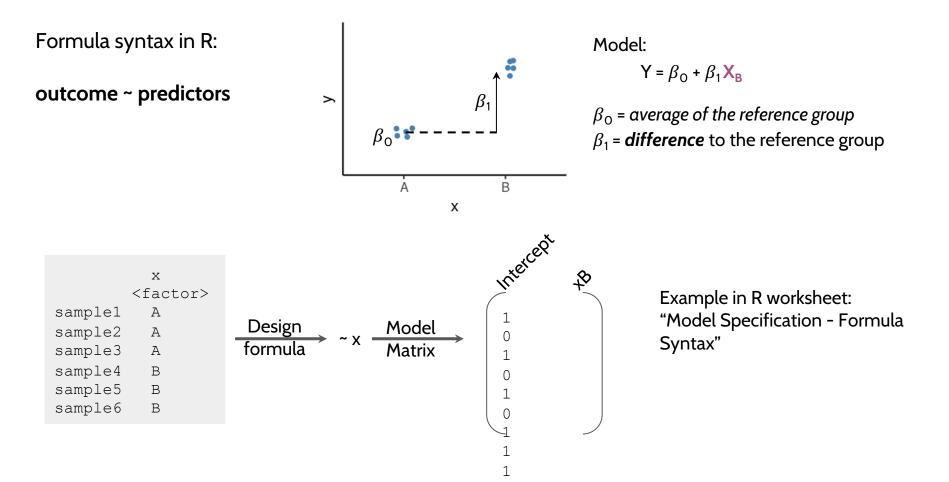
 β_0 = average of the reference group β_1 = **difference** to the reference group

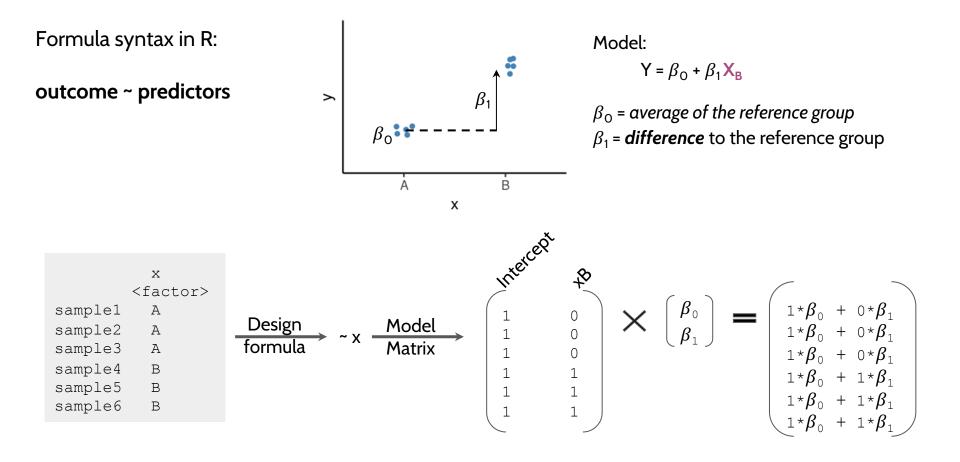


Test statistic: $\beta_1 / \sigma_{\beta_1}$

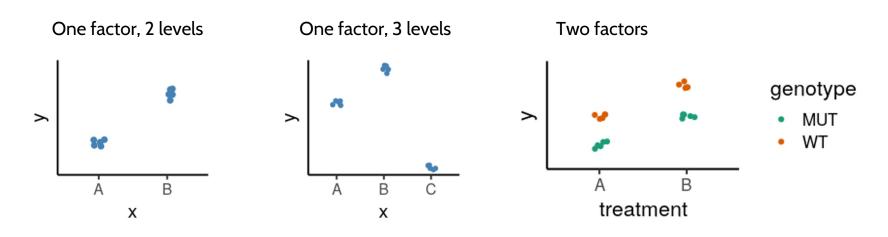
(our estimate divided by the uncertainty in that estimate)


P-value calculated from the test statistic


• Low p-value indicates that the data are not very compatible with the null hypothesis.



Formula syntax in R:


outcome ~ predictors

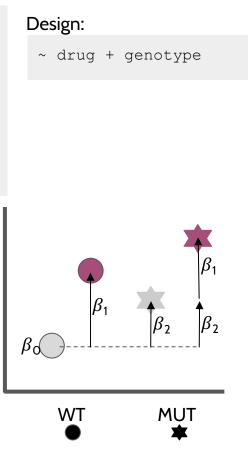
Common Designs

- Define our model with formula syntax
- Categorical variables are encoded as indicator variables in a model matrix
 - R does this for us
- Interpret coefficients to define hypothesis of interest

Common Designs | One factor, 3 levels

	drug	Design:		Mode	el matrix		
sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8	Pink Pink Yellow Yellow Yellow White White	~ drug		1 2 3 4 5 6 7	(Intercept) 1 1 1 1 1 1 1	drugPink 1 1 0 0 0 0	drugYellow 0 0 1 1 1 1 0
sample9	White			7 8 9	1 1	0	0 0
Null hypothesis:		•	•				
Pink vs White β_1 = O		β_{Φ}	β ₂	Expr = β_0 + β_1 drug _{Pink} + β_2 drug _{Yellow}		v	
Yellow vs White $\beta_2 = 0$				•			

Yellow vs Pink $\beta_2 - \beta_1 = 0$


Model Designs | Two factors - additive model

	drug	genotype
sample1	Pink	WT
sample2	Pink	WT
sample3	Pink	MUT
sample4	Pink	MUT
sample5	White	WT
sample6	White	WT
sample7	White	MUT
sample8	White	MUT

Null hypothesis:

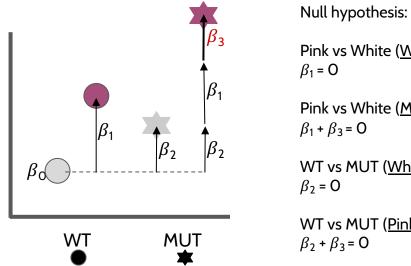
Pink vs White drug $\beta_1 = 0$

WT vs MUT genotype $\beta_2 = 0$

Model Matrix:

С
С
1
1
С
С
1
1

Expr = β_0 + β_1 drug_{Pink} + β_2 genotype_{MUT}


Model Designs | Two factors – interaction model

	drug	genotype
sample1	Pink	WΤ
sample2	Pink	WΤ
sample3	Pink	MUT
sample4	Pink	MUT
sample5	White	WT
sample6	White	WΤ
sample7	White	MUT
sample8	White	MUT

Design:

~ drug + genotype + drug:genotype

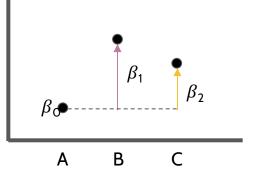
Expr = $\beta_0 + \beta_1 \operatorname{drug}_{\operatorname{Pink}} + \beta_2 \operatorname{genotype}_{\operatorname{MUT}} + \beta_3 \operatorname{drug}_{\operatorname{Pink}} \operatorname{genotype}_{\operatorname{MUT}}$

Pink vs White (WT) Pink vs White (MUT) $\beta_1 + \beta_3 = 0$ WT vs MUT (White) WT vs MUT (Pink)

 $\beta_2 + \beta_3 = 0$

Interaction ("Difference of differences"): $\beta_3 = 0$

Model Specification in *DESeq2*


- Create DESeqDataSet object
- Add model design:

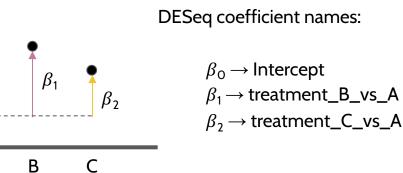
design(dds) \leftarrow ~ treatment

- Fit the statistical model

dds \leftarrow DESeq(dds)

- Check coefficients for hypothesis testing resultsNames(dds)

Model Specification in *DESeq2*


- Create DESeqDataSet object
- Add model design:

design(dds) \leftarrow ~ treatment

- Fit the statistical model

dds \leftarrow DESeq(dds)

- Check coefficients for hypothesis testing resultsNames (dds)

 $\beta \bullet$

Α

	Null Hypothesis			
B vs A	β ₁ = Ο			
C vs A	$\beta_2 = 0$			
C vs B	$\beta_2 - \beta_1 = 0$			

Model Specification in *DESeq2* | Interpreting the Results

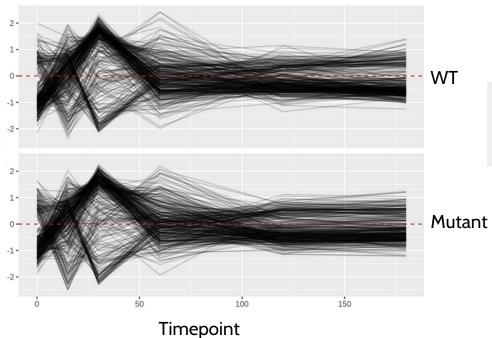
results(dds, contrast = list("treatment_B_vs_A"))

	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
gene1	32.80405	0.359444	0.598072	0.601004	0.5478372	0.923764
gene2	4.01072	3.407763	1.649827	2.065527	0.0388732	0.641407
gene3	7.01837	0.743337	0.994100	0.747749	0.4546118	0.923764
gene4	1.51006	2.814822	2.464686	1.142061	0.2534287	0.923764
gene5	11.23166	0.480522	0.894709	0.537071	0.5912189	0.923764
gene96	16.21864	0.684962	0.809892	0.845745	0.3976952	0.923764
gene97	2.91349	1.784327	1.790046	0.996805	0.3188590	0.923764
gene98	13.29915	-0.634070	0.768728	-0.824830	0.4094680	0.923764
gene99	82.45653	-0.963147	0.505109	-1.906810	0.0565452	0.799710
gene100	6.25763	1.673078	1.252839	1.335429	0.1817359	0.923764

baseMean \rightarrow Mean across *all* samples

- log2FoldChange \rightarrow log₂(B/A) i.e. the difference between treatments
- lfcSE \rightarrow the standard error of the log2FoldChange
- stat \rightarrow the test statistic = log2FoldChange/lfcSE

pvalue \rightarrow the p-value of the Wald test


padj \rightarrow the p-value adjusted for multiple testing (false discovery rate)

Model Specification in *DESeq2* | Likelihood-ratio Test

The default test in *DESeq2* is the Wald test, testing for null hypothesis that LFC = 0

And alternative is the Likelihood Ratio Test

$$LR=-2ln\left(rac{L(m_1)}{L(m_2)}
ight)$$

Example:

Conclusions

- Differential expression tests are based on linear models, where the gene expression is modelled as an outcome of several variables of interest (e.g. treatment, genotype, infection status, etc.).
- Linear models use *indicator or dummy variables* to encode categorical variables in a model matrix.
- To define models in R/DESeq2 we use the formula syntax: ~ variables
- Some common models are:
 - Single factor: ~ variable1
 - Two factor, additive: ~ variable1 + variable2
 - **Two factor, interaction:** ~ variable1 + variable2 + variable1:variable2
- Interpreting our model coefficients allows us to define hypothesis/comparisons/contrasts of interest.
- In DESeq2 we use the `results()` function to obtain the log2(fold-change) in gene expression between groups of interest ("contrast").