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Statistics of RNA-seq analysis





The ability to not only carry out statistical analysis on real-world 
problems, but also to understand and critique any conclusions 

drawn by others on the basis of statistics. 

Data literacy



• Collection
• Management
• Cleaning

• Sort data 
• Construct table, graphs 
• Look for patterns
• Hypothesis generation

• Interpretation
• Conclusions
• New ideas 
• Communication

• What to measure and 
how? 

• Study design ? 

PPDAC Cycle

• Understanding and defining 
the problem. 

• How do we go about 
answering this question? 

PROBLEM

CONCLUSION PLAN

ANALYSIS DATA

Statistics as an investigative process of problem-solving and decision-making

R. J. MacKay. R. W. Oldford. "Scientific Method, Statistical Method and the Speed of Light." Statist. Sci. 15 (3) 254 - 278, August 
2000.
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Statistics as an investigative process of problem-solving and decision-making

Toxoplasma gondii infection causes a host of severe neurological
disorders. Our understanding of the molecular mechanisms
associated with infection is incomplete.

We want to study the effect of Toxoplasma gondii infection
(chronic and acute) in mouse brain

• Total gene expression profile of
the brain in infection versus no-
infection

• A two-factor study with three
biological replicates in each
group with matched controls

Profiling the total transcriptome
with RNA-seq
Preprocessing and quality control

• IFN-γ response increases as
infection progresses

• Calcium response pathways are
downregulated

Hu  et al. Profiling of Mouse Brain During Acute and Chronic Infections by Toxoplasma gondii Oocysts. Front. Microbiol.  
2020



Outline

• Experimental Design

• General Statistical Concepts 

• Statistical aspects specific to bulk RNA-seq analysis



Outline

• Experimental Design

• Statistical Concepts - Bite size statistics

• Statistical aspects of bulk RNA-seq analysis



Consequences of Poor Experimental Design

Inability to answer the questions we would like to answer

• Cost of experimentation. 

• Limited & Precious material, esp. clinical samples.

• Immortalization of data sets in public databases and methods in the 
literature. Our bad science begets more bad science.

• Ethical concerns of experimentation: animals and clinical samples.



A Well-Designed Experiment

Should have
• Clear objectives
• Focus and simplicity
• Sufficient power
• Randomised comparisons

And be
• Precise
• Unbiased
• Amenable to statistical analysis
• Reproducible



Experimental Factors

• Factors: aspects of experiment that change and influence the outcome of the 
experiment
• e.g. time, weight, drug, gender, ethnicity, country, plate, cage etc.

• Variable type depends on type of measurement:
• Categorical (nominal) , e.g. sex 

• Categorical with ordering (ordinal), e.g. tumour grade 

• Discrete, e.g. shoe size, number of cells 

• Continuous, e.g. body weight in kg, height in cm

• Independent and Dependent variables
• Independent variable (IV): what you change

• Dependent variable (DV): what changes due to IV

• “If (independent variable), then (dependent variable)”



dependent variable = f ( independent variable ) + noise 

Sources of Variation

Biological Technical

• Biological “noise”
• Biological processes are inherently stochastic
• Single cells, cell populations, individuals, organs, species….
• Timepoints, cell cycle, synchronized vs. unsynchronized

• Technical noise
• Reagents, antibodies, temperatures, pollution

• Platforms, runs, operators

• Replication is required to capture variance



Types of Replication

• Biological replication:

• In vivo:

• Patients

• Mice

• In vitro:

• Different cell lines

• Re-growing cells (passages) 

• Technical replication:

• Experimental protocol

• Measurement platform (i.e. sequencer)



Confounding Factors

• Also known as extraneous, hidden, lurking or masking factors, or the third 
variable or mediator variable.

• May mask an actual association or falsely demonstrate an apparent 
association between the independent & dependent variables.

• Hypothetical Example would be a study of coffee drinking and lung cancer. 
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Solutions

• Write it all down!!!!!!!!

• Controlling technical effects:

• Randomisation

• Statistical analyses assume randomised comparisons
• May not see issues caused by non-randomised comparisons
• Make every decision random not arbitrary
• Caveat: over-randomization can increase error

• Blinding

• Especially important where subjective measurements are taken
• Potentially multiple degrees of blinding (eg. double-blinding) 



Randomised Block Design

• Blocking is the arranging of experimental units in groups (blocks) that are 
similar to one another.

• Each plate contains spatially randomised equal proportions of:
• Control
• Treatment 1 
• Treatment 2

• controlling plate effects.



Randomised Block Design

• Good design example: Alzheimer’s study from GlaxoSmithKline

Plate effects by plate
Left PCA plot show large plate effects.
Each colour corresponds to a different plate



Randomised Block Design

• Good design example: Alzheimer’s study from GlaxoSmithKline

Plate effects by plate
Left PCA plot show large plate effects.
Each colour corresponds to a different plate

Plate effects by case/control
Right PCA plot shows each plate cluster contains 
equal proportions of cases (blue) and controls (green).



Experimental Controls

• Ideal : Everything is identical across conditions except the variable you are testing

• Controlling errors

• Type I: False Positives

• Negative controls: should have minimal or no effect

• Type II: False Negatives

• Positive controls: known effect

• Technical controls

• Detect/correct technical biases

• Normalise measurements (quantification)



Examples of Experimental Controls

• Wild-type organism (knockouts)

• Inactive siRNA (silencing)

• Vehicle (treatments)

• Spike-ins (quantification/normalisation)

• “Gold standard” data points

• Multi-level controls

• e.g. contrast Vehicle/Input vs. Treatment/Input
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Basics on inferential statistics and hypothesis testing

Population: the complete set of individuals that 
we are interested in

Sample: smaller set of individuals that is 
representative of the population

Variable: what we are interested in measuring



Population: the complete set of individuals that 
we are interested in

Sample: smaller set of individuals that is 
representative of the population

Variable: what we are interested in measuring

inference

Inference means two things: 
1. Estimating population parameters 
2. Testing hypothesis regarding the 

population distribution

Null Hypothesis (H0)
Assumption about the 
population distribution 

and its parameters 
(mean, variance, etc)

Basics on inferential statistics and hypothesis testing

Slide content adapted from Matt Castle



Null Hypothesis (H0)
Assumption about the 
population distribution 

and its parameters 
(mean, variance, etc)

Choose test 
Based on data and H0

Calculate test statistic, interpret 
results Slide content adapted from Matt Castle

Basics on inferential statistics and hypothesis testing



A simple example

A neurologist is testing the effect of a drug on response time by
injecting 100 rats with a unit dose of the drug subjecting each
to neurological stimulus and recording its response time. The
neurologist knows that the mean response time for rats not
injected with the drug is 1.2 seconds. The mean of the 100
injected rats response times is 1.05 seconds with the sample
standard deviation of 0.5 seconds. Do you think that the drug
has an effect on response time ?

H0: Drug has no effect on response 
time

H1: Drug has an effect on response 
time

Example adapted from Sal Khan
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Constructed the null and 
alternative hypothesis 
about the population

Calculated test statisticObtained p-value

Reached a conclusion

Assume H0: 



Key Concepts - Hypothesis Testing

• All statistical tests are based on assumptions!

• All statistics can be wrong

• Statistical tests are probabilistic in nature 

• There is always a chance that the result is wrong (even when all assumptions 
met perfectly):  

• Either significant result when no difference (Type I), 

• Or insignificant results when there is an actual difference (Type II) 

Slide content adapted from Matt Castle



Type I and Type II Errors
• All hypothesis tests involve making a decision: 

Slide content adapted from Matt Castle

Is this result significant or not? 

Type II error or False negative
This is when you fail to reject the 
null hypothesis when it isn't true

"You're not pregnant"

Type I error or False positive
This is when you reject the null 

hypothesis when it is true

"You're pregnant !"

• This decision can be wrong in two ways: 



Type I and Type II Errors
H0: µ = 1.2 
s
H1: µ ≠ 1.2 
s

µ = 1.2 
s

if p-value > ⍺→ do not reject H0
if p-value < ⍺→ reject H0 in favour of
H1

⍺=0.05 → the type I error, the probability of 
rejecting 

H0 when H0 is correct 

Suppose H1 true: 

Depending on your sampling, you 
might fail to reject H0 



Type I and Type II Errors
H0: µ = 1.2 
s
H1: µ ≠ 1.2 
s

µ = 1.2 
s

µ = 1.2 
s

µ = 1.05 
s

if p-value > ⍺→ do not reject H0
if p-value < ⍺→ reject H0 in favour of
H1

⍺=0.05 → the type I error, the probability of 
rejecting 

H0 when H0 is correct 

Suppose H1 true: 

⍬→ the type II error, the probability of not 
rejecting 

H0 when H1 is correct 



Type I and Type II Errors
H0: µ = 1.2 
s
H1: µ ≠ 1.2 
s

µ = 1.2 
s

µ = 1.2 
s

µ = 1.05 
s

if p-value > ⍺→ do not reject H0
if p-value < ⍺→ reject H0 in favour of
H1

⍺=0.05 → the type I error, the probability of 
rejecting 

H0 when H0 is correct 

Suppose H1 true: 

θ→ the type II error, the probability of not 
rejecting

H0 when H1 is correct 

1- θ→ Power is the probability that we actually detect 
an effect that exists



Effect Size (δ) Sample Size (n)

Significance 
Level (⍺)

Power (1 − θ)

Power Analysis

• The four concepts are linked

• If we know three, we can work out the forth

• Power calculation: Aim is to define the 
probability (1-θ) to detect an effect size of 
interest (δ) at the ⍺ level with a sample size of n
biological replicates 

• Sample size calculation: Aim is to define the 
sample size (n) allowing to detect an effect size 
of interest (δ) at the α level with a given 
probability (1 − θ). 



Power Analysis in Differential Expression Analysis
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Statistical Aspects of Differential Expression Analysis

Model the expression of each gene as linear combination of 
explanatory factors (eg. treatment, age, sex, etc.) 

Linear Modeling

y - expression of the gene

𝞫i - parameters we want to estimate from the data

𝞫0 - the “intercept” (the value of expression when all other 
parameters are set at a reference level)

σ - the standard deviation (uncertainty) of our model (also estimated 
from the data)



This plot illustrates some common features of RNA-seq count 
data:
• a low number of counts associated with a large proportion of 

genes
• a long right tail due to the lack of any upper limit for 

expression
• large dynamic range

Statistical Aspects of Differential Expression Analysis

Looking at the shape of the histogram, we see that it is not 
normally distributed.

Characteristics of RNA-seq data



To assess the properties of the data we are working with, we can 
look at the mean-variance relationship.

Statistical Aspects of Differential Expression Analysis

Essentially, the Negative Binomial is a good approximation for 
data where the mean < variance, as is the case with RNA-Seq 
count data.

For the genes with high mean expression, the variance across 
replicates tends to be greater than the mean (scatter is above 
the red line).

Characteristics of RNA-seq data



Statistical Aspects of Differential Expression Analysis

Model the expression of each gene as linear combination of 
explanatory factors (eg. treatment, age, sex, etc.) 

Linear Modeling

counts - expression of the gene

𝞫i - parameters we want to estimate from the data

𝞫0 - the “intercept” (the value of expression when all other 
parameters are set at a reference level)

ɸ - the “dispersion” (uncertainty) of our model (also estimated from 
the data)

s - scaling factor (sequencing depth and transcript composition)
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Statistical Aspects of Differential Expression Analysis

Model the expression of each gene as linear combination of 
explanatory factors (eg. treatment, age, sex, etc.) 

Linear Modeling

counts - expression of the gene

𝞫i - parameters we want to estimate from the data

𝞫0 - the “intercept” (the value of expression when all other 
parameters are set at a reference level)

ɸ - the “dispersion” (uncertainty) of our model (also estimated from 
the data)

s - scaling factor (sequencing depth and transcript composition)

Coefficients are estimated for each sample group 

along with their standard error. 

The coefficients are the estimates for the log2 

fold-changes, and will be used as input for 

hypothesis testing.



Statistical Aspects of Differential Expression Analysis
Linear Modeling

counts - expression of the gene

𝞫i - parameters we want to estimate from the data

𝞫0 - the “intercept” (the value of expression when all other 
parameters are set at a reference level)

ɸ - the “dispersion” (uncertainty) of our model (also estimated from 
the data)

s - scaling factor (sequencing depth and transcript composition)

Summary:

● Use negative binomial linear regression to model 

gene expression in RNA-seq

● Calculate size factors for each sample to account 

for differences in sequencing depth and transcript 

composition between samples

● Estimate dispersion for each gene by “borrowing” 

information across genes for more precise estimates 

when sample sizes are small (as is typical in RNA-seq 

experiments)

● Estimate model coefficients which are used to 

define test hypothesis (𝞫i = 0)
Description of DESeq2 model: Love, Huber & Anders (2014)

https://doi.org/10.1186/s13059-014-0550-8


P-value Histograms

Examples of expected overall distribution 

(a) : the most desirable shape
(b) : very low counts genes usually have large p-values 
(c) : do not expect positive tests after correction 



P-value Histograms

Examples of unexpected overall distribution 

(a) : indicates a batch effect (confounding hidden variables)
(b) : the test statistics may be inappropriate (due to strong 

correlation structure for instance)
(c) : discrete distribution of p-values : unexpected 



Multiplicity Correction

• A gene with a significance cut-off of α = 0.05, means there is a 5% chance it is 
a false positive. 

• If we test for 20,000 genes for differential expression at α = 0.05, we would 
expect to find 1,000 genes by chance

• If we found 3000 genes to be differentially expressed total, roughly one third 
of our genes are false positives!

• The more genes we test, the more we inflate the false positive rate. This is the 
multiple testing problem.



Multiplicity Correction

• Bonferroni: The adjusted p-value is calculated by: α k (k = total number of 
tests). This is a very conservative approach

• FDR/Benjamini-Hochberg: Benjamini and Hochberg (1995) defined the 
concept of FDR and created an algorithm to control the expected FDR below 
a specified level given a list of independent p-values.



Conclusions

• Assumptions assumptions assumptions


