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Summary

QUESTIONS

• How do I define a statistical model in R and DESeq2?
• How do I interpret the results from these models and define hypothesis to test?
• How can I define comparisons of interest between different groups of samples?

We will use the following packages for this lesson:

# load packages for this session
library(DESeq2)
library(tidyverse)
theme_set(theme_classic())

Linear Models in R

Although this course is focused on analysis of RNA-seq data with DESeq2, much of the machinery used by
this program is based on a general class of statistical models called linear models. The way DESeq2 defines
these models is very similar to how it’s done in base R, and so we will cover both how defining linear models
works in R, and then more specifically how to do it in DESeq2.

A model is a simplified representation of how we think different variables relate to each other. Typically we
have an observed variable (e.g. gene expression) and we want to understand how it is influenced by other
variables, which we often control or vary (e.g. a treatment or a genotype).

One of the most well-known examples of a linear model is the linear regression:
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In this example, we say that the variable “y” is the outcome or dependent variable and its value is
influenced by the predictor or independent variable “x.” We can express this relationship as:

y = β0 + β1x

Those βi terms are numbers that we want to estimate:

• β0 is the intercept, i.e. the value of y when x = 0
• β1 is the slope, i.e. how much y changes for every unit increase of x

For example, if y = 0.5 − 4.2 × x we have that β0 = 0.5 and β1 = −4.2.

Statistical model notation

Throughout these materials, we are using a simplified way to specify our models. This is fine for our purpose,
which is mostly to understand what the model coefficients mean. However, in our notation we are ignoring
the fact that models can have different distributional assumptions or other components to the model.

For example, our linear regression model would more correctly be written as:

yi ∼ N(µi, σ2)

µi = β0 + β1xi

Which we can read as: our variable yi follows a normal distribution with mean µi and variance σ2; the mean
ui is a linear function of the variable xi.

In the case of modeling gene expression, we would instead have:

yi ∼ NB(µi, ϕ)

log(µi) = β0 + β1xi

Which we can read as: the gene expression yi follows a negative binomial distribution with mean µi and
dispersion ϕ; the log of the mean is a linear function of the variable xi.

The model for gene expression is even more complicated, because the dispersion parameter ϕ is itself esti-
mated based on a model, which uses dispersion estimates across all the genes. This is out of the scope of
this course, but you can find more information about the full model in the DESeq2 paper.

Categorical Variables

In linear regression the predictor variable x is continuous. However, in RNA-seq experiments our predictors
are more often categorical variables (aka factors). For example:
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Although this looks a little different from a linear regression, it can also be expressed as a linear model in
the following way:

y = β0 + β1xB

Where:

• β0 is our intercept, which in this case is the average of a reference group (in this example “A”).
• β1 is the difference between the reference group and the other group (“B”).

β1

β0

A B
x

y

The trick here is to turn x into an indicator variable (aka dummy variable), which will have values 0
or 1 depending on whether a given observation is in group B.

sample x xb

sample1 A 0
sample2 A 0
sample3 A 0
sample4 B 1
sample5 B 1
sample6 B 1

For example, if y = 2.1 + 0.3 × xB , we have that β0 = 2.1 and β1 = 0.3. And because xB is an indicator 0/1
variable, the average of each group is:

• if “A” then y = 2.1 + 0.3 × 0 = 2.1
• if “B” then y = 2.1 + 0.3 × 1 = 2.1 + 0.3 = 2.4

We don’t have to worry about creating these indicator variables, since R takes care of creating them for us,
as we will see below. However, it is important to understand how these models are specified, so that we can
interpret our results.

Glossary of Statistical Terms
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• variable - something that was measured or controlled for, essentially a column in our table.
• outcome variable - the variable that you’re trying to make inferences on. For example, gene expression.
• predictor variable - a variable that we think influences the outcome variable in some way. For example,

genotype or treatment.
• factor - a predictor variable that is categorical (rather than continuous).
• level - the different values that a factor can take. For example, the genotype variable with two levels:

“wt” and “mutant.”
• indicator variables (aka dummy variables) - variables that can take the value 0 or 1 to indicate

whether an observation belongs to a given group.
• model coefficient - those βi terms are called the coefficients of the model. They are what we want to

estimate from our data.
• model intercept - in models with factors (categorical X) this is the average of a reference level. For

example, for a genotype with two levels - “wt” and “mutant” -, we may set “wt” as the reference level,
so so that the other coefficients are defined in relation to it.

Null Hypothesis Testing

Often, when we fit a model to our data we want to infer whether a particular variable does indeed influence
our outcome (and possibly by how much). This is usually achieved using null hypothesis testing, where
we ask the question: how compatible are my data with a “boring” hypothesis? If the data are extremely
incompatible with this null hypothesis (low p-value), we reject that hypothesis in favour of an alternative
hypothesis.

Typically the null hypothesis is that our predictor variable has no effect on the outcome. Taking the examples
above, our null hypothesis would be that β1 = 0.

To answer this question we need two things:

• Our best estimate for β1 given the data
• The uncertainty around that estimate, which we can denote as σβ1

Once we have those two pieces of information we can calculate a test statistic as β1
σβ1

. We can then compare
this distribution to a standard distribution, and calculate a p-value. The p-value indicates the probability
of observing a test statistic at least as extreme as ours, assuming that nothing is going on. Or, in other
words, it tells us how compatible our data are with β1 = 0. If the p-value is very low, that tells us that
our data are not very compatible with that hypothesis, and so we may reject it in favour of assuming that
β1 ̸= 0.

Note that a high p-value doesn’t mean that β1 = 0, it just means that our data are compatible with that
hypothesis, but it may also be equally compatible with other hypothesis. For example, if we have a lot of
noise in our data (or very few replicates), then it’s hard to reject any hypothesis, because we cannot be very
precise in our estimate of β1 (i.e. σβ1 is too high).
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• Write a model compatible with the plot above, which shows the effect of a drug on gene expression.
• Biologically speaking, what do each of the β coefficients in your model mean?
• What is the null hypothesis for testing for an effect of the treatment on the gene’s expression?
• Write the values for the indicator variable for each sample (the numbers in the points are sample ID).

Answer

We could write the model as follows:

expression = β0 + β1treatmentdrug1

The meaning of the coefficients is:

• β0 is the average expression of the reference group, the placebo in this case.
• β1 is the average difference in expression between drug1 and placebo.

The null hypothesis that drug1 has no effect on our gene’s expression is β1 = 0.

The indicator variable for treatmentdrug1 is:

sample1 1
sample2 0
sample3 0
sample4 1
sample5 1
sample6 0

Model Specification

To build our model, we start by specifying the model design, which is an expression that indicates what
factors we expect to influence our outcome variable. In R, we use a formula syntax to specify our models,
for example:
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y ~ x

We can read this as: the values of the outcome variable “y” are dependent on the predictor variable “x.” In
RNA-seq, “y” is the expression of a gene, and the variables “x” are typically things that we experimentally
manipulated or controlled for (e.g. a treatment, or a genotype).

When we specify a model design (in DESeq2 or in standard functions in R such as lm(), used to fit linear
models), R takes care of creating those indicator variables that we talked about earlier. These are encoded
in a so-called model matrix.

Let’s see how this works with an example. Say we had the following information about some samples in a
RNA-seq experiment:

example_samples <- tibble(
sample = paste0("sample", 1:6),
treatment = rep(c("A", "B"), each = 3)

)
example_samples

## # A tibble: 6 x 2
## sample treatment
## <chr> <chr>
## 1 sample1 A
## 2 sample2 A
## 3 sample3 A
## 4 sample4 B
## 5 sample5 B
## 6 sample6 B

First let’s define our model formula for the predictor variables:

temperature_model <- formula(~ treatment)

To find our model matrix we can do:

model.matrix(temperature_model, data = example_samples)

## (Intercept) treatmentB
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 1
## 5 1 1
## 6 1 1
## attr(,"assign")
## [1] 0 1
## attr(,"contrasts")
## attr(,"contrasts")$treatment
## [1] "contr.treatment"

We can see that our variable treatment was turned into two indicator variables called (Intercept) and
treatmentB. These match what we talked about earlier:
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• (Intercept) is the indicator variable for β0, which corresponds to the reference group (in this case
“A”).

• treatmentB is the indicator variable for β1, and tells us whether samples belong to the “B” group (it
takes the value 1 only for samples 4-6).

• Using the read_tsv() function, read in the table with sample information from our RNA-seq experi-
ment located in data/samplesheet_corrected.tsv. Save it in an object called sample_info.

• Create a model formula to investigate the effect of “Status” on gene expression.
• Look at the model matrix and identify which is the reference group in your model.

Answer

We can read the table as follows:

sample_info <- read_tsv("data/samplesheet_corrected.tsv")

# print it's contents
sample_info

## # A tibble: 12 x 4
## SampleName Replicate Status TimePoint
## <chr> <dbl> <chr> <chr>
## 1 SRR7657878 1 Infected d11
## 2 SRR7657881 2 Infected d11
## 3 SRR7657880 3 Infected d11
## 4 SRR7657874 1 Infected d33
## 5 SRR7657882 2 Uninfected d33
## 6 SRR7657872 3 Infected d33
## 7 SRR7657877 1 Uninfected d11
## 8 SRR7657876 2 Uninfected d11
## 9 SRR7657879 3 Uninfected d11
## 10 SRR7657883 1 Uninfected d33
## 11 SRR7657873 2 Infected d33
## 12 SRR7657875 3 Uninfected d33

Our model formula is:

status_model <- formula(~ Status)

To investigate which is our reference group, we can look at the model matrix:

model.matrix(status_model, data = sample_info)

## (Intercept) StatusUninfected
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 0
## 5 1 1
## 6 1 0
## 7 1 1
## 8 1 1
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## 9 1 1
## 10 1 1
## 11 1 0
## 12 1 1
## attr(,"assign")
## [1] 0 1
## attr(,"contrasts")
## attr(,"contrasts")$Status
## [1] "contr.treatment"

From the column names of this matrix, we can see that we have StatusUninfected as one of our indicator
variables. Therefore, by exclusion, “Infected” was set as the reference group.
Although this is OK, it might make more intuitive sense to set “Uninfected” as the reference group. How to
achieve this is detailed after this exercise.
You will have noticed that, in the previous exercise, the reference level was set simply taking into account
alphabetical order. Whichever value comes first (alphabetically) is set as the reference level in the model.
To change this default behaviour, we need to turn our categorical variables into factors, with a specific level
set as the reference. We can achieve this with the fct_relevel() function:

fct_relevel(sample_info$Status, "Uninfected")

## [1] Infected Infected Infected Infected Uninfected Infected
## [7] Uninfected Uninfected Uninfected Uninfected Infected Uninfected
## Levels: Uninfected Infected

If we modify our sample_info table in this way, we can see that the reference level in the model matrix
changes to have “Uninfected” as the reference:

sample_info$Status <- fct_relevel(sample_info$Status, "Uninfected")

model.matrix(status_model, data = sample_info)

## (Intercept) StatusInfected
## 1 1 1
## 2 1 1
## 3 1 1
## 4 1 1
## 5 1 0
## 6 1 1
## 7 1 0
## 8 1 0
## 9 1 0
## 10 1 0
## 11 1 1
## 12 1 0
## attr(,"assign")
## [1] 0 1
## attr(,"contrasts")
## attr(,"contrasts")$Status
## [1] "contr.treatment"

Why do we use model matrices?
TODO Make a note about matrix multiplication.
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Common Designs

So far we’ve been showing examples of a simple model design: a single factor with two levels. Examples of
this type of design are:

• Treatment: “control,” “treated”
• Genotype: “wt,” “mutant”
• Timepoint: “t0,” “t1”
• Infection: “uninfected,” “infected”
• Disease: “healthy,” “sick”

However, very often we have other kinds of experimental designs, and we cover some of the more common
ones in this section.

One Factor, Multiple Levels

What if we had a factor with three levels?

A B C
x

y

The same concept as we covered before applies here, except that we have to create more indicator variables.
The linear model for this illustration would be:

y = β0 + β1xB + β2xC

Where:

• β0 is the average of the reference group (in this example “A”)
• β1 is the difference between “B” and the reference group “A.”
• β2 is the difference between “C” and the reference group “A.”
• xB indicates whether a sample belongs to group B or not.
• xC indicates whether a sample belongs to group C or not.

β0

β1

β2

A B C
x

y

For example, if y = 2.1 + 0.3 × xB − 5 × xC , we have that β0 = 2.1, β1 = 0.3 and β2 = −5. And because xB

and xC are indicator 0/1 variables, the average of each group is:
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• If “A” then y = 2.1 + 0.3 × 0 − 5 × 0 = 2.1
• If “B” then y = 2.1 + 0.3 × 1 − 5 × 0 = 2.1 + 0.3 = 2.4
• If “C” then y = 2.1 + 0.3 × 0 − 5 × 1 = 2.1 − 5 = −2.9

Two Factors, Additive Model

So far, we’ve only talked about models with a single factor (with either two or three levels). However, many
experiments involve two or more factors (e.g. a genotype and a treatment). In these cases the design can
get a little more complicated, especially due to the fact that there may be interactions between the factors.

A two-factor design might look like this:

A B
treatment

y

genotype

WT

MUT

We have two factors, each with two levels:

• treatment with levels “A” and “B”
• genotype with levels “WT” and “MUT”

In this case we can see that there is both an effect of treatment (“B” is on average higher than “A”) and
also genotype (“WT” is on average higher than “MUT”).

Defining a model formula for this relationship is similar to what we did before. Let’s see an example:

# example data
two_factor <- tibble(genotype = rep(c("WT", "MUT"), 4),

treatment = rep(c("A", "B"), each = 4)) %>%
arrange(genotype, treatment) %>%
mutate(genotype = fct_relevel(genotype, "WT"))

two_factor

## # A tibble: 8 x 2
## genotype treatment
## <fct> <chr>
## 1 MUT A
## 2 MUT A
## 3 MUT B
## 4 MUT B
## 5 WT A
## 6 WT A
## 7 WT B
## 8 WT B
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To specify our model, we now have to add both variables to our formula:

two_factor_additive <- formula(~ genotype + treatment)

# check the model matrix with dummy/indicator variables
model.matrix(two_factor_additive, data = two_factor)

## (Intercept) genotypeMUT treatmentB
## 1 1 1 0
## 2 1 1 0
## 3 1 1 1
## 4 1 1 1
## 5 1 0 0
## 6 1 0 0
## 7 1 0 1
## 8 1 0 1
## attr(,"assign")
## [1] 0 1 2
## attr(,"contrasts")
## attr(,"contrasts")$genotype
## [1] "contr.treatment"
##
## attr(,"contrasts")$treatment
## [1] "contr.treatment"

Looking at our model matrix, we can see that it looks somewhat similar to what we had before, except that
now we have indicator variables for both genotype and treatment We can deduce that our intercept refers
to treatment “A,” genotype “WT” (this is our reference group).

Our model could therefore be written as:

y = β0 + β1.genotypeMUT + β2.treatmentB

And illustrated as follows:

β0

β2

β1

β1

A B
treatment

y

genotype

WT

MUT

Again, everything is defined relative to the reference group, so for example if we had that y = 1 + 1.5 ×
genotypeMUT + 2 × treatmentB , then the average prediction for each of our groups would be:
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• if “A” and “WT”: y = 1 + 1.5 × 0 + 2 × 0 = 1 (only the intercept contributes since this is the reference
group)

• if “B” and “WT”: y = 1+1.5×0+2×1 = 3 (the intercept and the coefficient for treatment contributes,
but not genotype since “WT” is the reference level for genotype)

• if “A” and “MUT”: y = 1 + 1.5 × 1 + 2 × 0 = 2.5 (the intercept and the coefficient for genotype
contribute, but not treatment since “A” is the reference level for treatment)

• if “B” and “MUT”: y = 1 + 1.5 × 1 + 2 × 1 = 4.5 (all terms contribute)

• Using our sample_info object, create a new design formula specifying an additive model between
“Status” and “TimePoint.”

• How many coefficients do you have with this model?
Hint
Look at the model matrix.

• What is your reference group?

Answer

The model is:

additive_model <- formula(~ Status + TimePoint)

We can check how many coefficients we will with this mode, by examining the model matrix:

model.matrix(additive_model, data = sample_info)

## (Intercept) StatusInfected TimePointd33
## 1 1 1 0
## 2 1 1 0
## 3 1 1 0
## 4 1 1 1
## 5 1 0 1
## 6 1 1 1
## 7 1 0 0
## 8 1 0 0
## 9 1 0 0
## 10 1 0 1
## 11 1 1 1
## 12 1 0 1
## attr(,"assign")
## [1] 0 1 2
## attr(,"contrasts")
## attr(,"contrasts")$Status
## [1] "contr.treatment"
##
## attr(,"contrasts")$TimePoint
## [1] "contr.treatment"

We have 3 coefficients, and from their names we can see that this corresponds to:

Expression = β0 + β1.StatusInfected + β2.T imePointd33

Where:

• β0 is the intercept, i.e. the average of the reference group (Uninfected, d11).
• β1 is the difference between Infected and Uninfected.
• β2 is the difference between d33 and d11.

12



Two Factors, Interaction Model

One major issue that we need to consider when going from one to two factors is that there might be an
interaction between them. Take the following example:

A B
treatment

y

genotype

WT

MUT

Now we can see that the way each genotype responds to the treatment is different: the WT has a bigger
difference between “A -> B” compared to the mutant (the “slopes” of those lines are different). This is what
we mean by an interaction: the effect of one variable depends on the value of the other variable. In other
words, the effect of the treatment depends on the individual’s genotype.

We can model interactions between factors by using the following formula syntax:

# specify our model formula, with both variables added as well as their interaction
two_factor_interaction <- formula(~ genotype + treatment + genotype:treatment)

# check the model matrix with dummy/indicator variables
model.matrix(two_factor_interaction, data = two_factor)

## (Intercept) genotypeMUT treatmentB genotypeMUT:treatmentB
## 1 1 1 0 0
## 2 1 1 0 0
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 0 0 0
## 6 1 0 0 0
## 7 1 0 1 0
## 8 1 0 1 0
## attr(,"assign")
## [1] 0 1 2 3
## attr(,"contrasts")
## attr(,"contrasts")$genotype
## [1] "contr.treatment"
##
## attr(,"contrasts")$treatment
## [1] "contr.treatment"
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This look similar to what we had before, except now we have a third indicator variable, and this tells us
which samples are both “MUT” genotype and treatment “B.” Writing our model, we have:

y = β0 + β1.genotypeMUT + β2 treatmentB + β3 genotypeMUT &treatmentB

Crucially, β3 is the interaction term. This term reflects the “extra nudge” that the sample gets for being a
MUT in treatment B specifically:

β0

β2

β1

β1

β3

A B
treatment

y

genotype

WT

MUT

As before, everything is defined relative to the reference group, so for example if we had that y = 1 + 1.5 ×
genotypeMUT + 2 × treatmentB + 1 × genotypeMUT &treatmentB , then the average prediction for each of
our groups would be:

• if “A” and “WT”: y = 1 + 1.5 × 0 + 2 × 0 + 1 × 0 = 1 (only the intercept contributes since this is the
reference group)

• if “B” and “WT”: y = 1 + 1.5 × 0 + 2 × 1 + 1 × 0 = 3 (the intercept and the coefficient for treatment
contributes, but not genotype since “WT” is the reference level for genotype)

• if “A” and “MUT”: y = 1 + 1.5 × 1 + 2 × 0 + 1 × 0 = 2.5 (the intercept and the coefficient for genotype
contribute, but not treatment since “A” is the reference level for it)

• if “B” and “MUT”: y = 1 + 1.5 × 1 + 2 × 1 + 1 × 1 = 5.5 (all terms contribute)

Should I always include an interaction in my model?

The answer is probably yes. Unless you have a strong reason to believe that the responses to your factors
are purely additive, then you should include an interaction in your model.

• Which of these cases show an interaction between the Treatment and Genotype variables?
• And which ones differ between genotypes under control conditions?
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Answer

• Panels 2, 4 and 5 show an interaction between the two variables. In panel 1 there is an effect of both
genotype and treatment, but both genotypes respond the same to the treatment (the lines are parallel
to each other). In panel 3 there’s no effect of treatment for either genotype (the lines are “flat”),
although the two genotypes differ from each other.

• Panels 1, 3, 5 show a different of genotypes in control conditions. By contrast, in panels 2 and 4 the
points for the “Control” treatment are overlapping.

Other Designs

There are more complicated experimental designs, for example including more factors (not just two), and
more levels within each factor. You can also have so-called nested designs, where the levels of the factors do
not occur in all combinations. For example, if you have samples from patients in different hospitals, each
patient only occurs in a single hospital (you can’t have a patient in two hospitals at once).

We will not cover these more complicated designs in this course. In those instances it may be helpful to
try and get in touch with a local bioinformatician/statistician to help you. However, always try and do a
web-search first, as there are many questions and answers posted on the Bioconductor Support Site.

Model Specification in DESeq2

Having covered how models are specified in R, how factors are encoded as indicator variables and how we
can interpret the coefficients of our models and build hypothesis from them, we are now ready to see how
these things apply to DESeq2.

DESeq2 uses a special kind of object called DESeqDataSet, which stores a large matrix of gene counts (genes
as rows and samples as columns) and also information about each sample in that matrix. The information
about the samples is stored in the colData part of the object (since samples are the columns of the gene
counts matrix). This is one of the most relevant parts of the object for us, since it contains the variables
that we use to build our model.

We will see how to create a DESeqDataSet object from our data in the next lesson. For now, let’s work with
simulated data just to illustrate how we specify models and extract results of interest.
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# create a simulated DESeqDataSeq object
dds <- makeExampleDESeqDataSet(n = 100, m = 9)
colData(dds) <- DataFrame(treatment = factor(rep(c("A", "B", "C"), each = 3)),

row.names = paste0("sample", 1:9))

# check the sample information
colData(dds)

## DataFrame with 9 rows and 1 column
## treatment
## <factor>
## sample1 A
## sample2 A
## sample3 A
## sample4 B
## sample5 B
## sample6 B
## sample7 C
## sample8 C
## sample9 C

In this example we have a single factor (“treatment”) with three levels (“A,” “B” and “C”). We can define
our model formula using the design() function:

design(dds) <- formula(~ treatment)

Just as before, we can check our model matrix by pulling the formula directly from the design and colData
information of our object:

model.matrix(design(dds), data = colData(dds))

## (Intercept) treatmentB treatmentC
## sample1 1 0 0
## sample2 1 0 0
## sample3 1 0 0
## sample4 1 1 0
## sample5 1 1 0
## sample6 1 1 0
## sample7 1 0 1
## sample8 1 0 1
## sample9 1 0 1
## attr(,"assign")
## [1] 0 1 1
## attr(,"contrasts")
## attr(,"contrasts")$treatment
## [1] "contr.treatment"

This looks just like what we did before, except that now everything is stored together in our DESeqDataSet
object.

Our model for gene expression can therefore be written as:

expression = β0 + β1treatmentB + β2treatmentC
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With this information, DESeq is now ready to fit its in-built statistical model to the data (modelling our gene
counts using a negative binomial distribution). To do this, we update our object by running the DESeq()
function:

dds <- DESeq(dds)

Now, for the part that interests us in this session, we want to look at the results of our differential expression
test. We can do this with the results() function:

results(dds)

## log2 fold change (MLE): treatment C vs A
## Wald test p-value: treatment C vs A
## DataFrame with 100 rows and 6 columns
## baseMean log2FoldChange lfcSE stat pvalue padj
## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
## gene1 1.21166 -0.234060 2.697354 -0.0867739 0.930851 0.996992
## gene2 2.52896 -1.312538 1.905192 -0.6889269 0.490869 0.965561
## gene3 15.15593 1.161138 0.747642 1.5530675 0.120407 0.630185
## gene4 26.18223 0.331849 0.732596 0.4529766 0.650566 0.985705
## gene5 11.78639 0.827476 0.789710 1.0478223 0.294720 0.857133
## ... ... ... ... ... ... ...
## gene96 13.41491 -1.268626 0.754804 -1.680736 0.0928142 0.630185
## gene97 3.31383 0.676445 1.255577 0.538752 0.5900576 0.965561
## gene98 53.04983 -0.723232 0.502064 -1.440518 0.1497209 0.630185
## gene99 56.33559 0.446852 0.602119 0.742133 0.4580071 0.965561
## gene100 5.63780 1.818219 1.286441 1.413372 0.1575464 0.630185

We can see at the top of the printed table that these results are for a test between treatments C vs A. But
how did the results() function determine this? Well, in this case it picked one of the possible comparisons
for us, but we can define which comparison we want.

We can see the estimated coefficients from our model using the resultsNames() function:

resultsNames(dds)

## [1] "Intercept" "treatment_B_vs_A" "treatment_C_vs_A"

Linking this back to our model specification:

• Intercept is what we’ve called β0; typically this is not something we’re interested in.
• treatment_B_vs_A is what we’ve called β1, but DESeq nicely names it with an intuitive name, sug-

gesting that this term is effectively comparing treatment “B” against the reference level “A.”
• treatment_C_vs_A is what we’ve called β2, again named intuitively to indicate this is equivalent to

comparing treatment “C” against the reference level “A.”

To specify a different comparison from the default, we can use the contrast option when getting our results:

# compare B vs A
results(dds, contrast = list("treatment_B_vs_A"))
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Comparing “A” vs the others is relatively easy, because “A” is the reference level. But what if we wanted to
compare B vs C? As we saw in a previous exercise, this is equivalent to asking whether the two coefficients
are different from each other (the null hypothesis is: β2 − β1 = 0). We can get this comparison by passing
two values to the list:

# compare C vs B
results(dds, contrast = list("treatment_C_vs_A", "treatment_B_vs_A"))

Interpreting the Results

When obtaining the results() from our model, we get several columns in the output. Their meaning is:

• baseMean is the overall mean expression across all the samples (regardless of which group they belong
to). It’s a useful column to investigate which genes are overall highly or lowly expressed.

• log2FoldChange is the estimated difference between the two conditions being compared. It’s the value
for what we called β in our models. We’ll come back to this column below.

• lfcSE is the standard error (SE) for the log-fold-change (lfc). This is the uncertainty of our β estimate,
what earlier we referred to as σβi

.
• stat is our test statistic (called Z-statistic), corresponding to Z = βi

σβi
, you can check this by dividing

the log2FoldChange column by the lfcSE column.
• pvalue this is the p-value for the test implemented in DESeq2, which by default is the “Wald Z-test,”

which assumes that Z ∼ N(0, 1). The p-value indicates the probability of getting a test statistic, Z,
at least as extreme as ours assuming that βi = 0 (or, in other words, log2FoldChange = 0).

• padj is the p-value adjusted for multiple testing. In this case, DESeq2 uses a false discovery rate
correction.

Let’s focus a but more on the log2FoldChange column. So far, we’ve been expressing comparisons between
groups as differences, but DESeq reports the results as fold-change, which is a ratio. For example, for the
comparison between “A” and “C” that we did above, the meaning of that column is:

log2( Average Expression in C
Average Expression in A )

Expressing our results as a ratio is very useful when we’re interested in relative changes. In this case it is
more interpretable to say “gene X is 2 times more highly expressed in WT compared to Mutant” than to
say “gene X is 20 units expression higher in WT compared to Mutant.”

The reason that relative changes are expressed on a log-scale has to do with having a symetric representa-
tion of the differences between the numerator and denominator. The issue is that when the numerator >
denominator values can go from 1 to infinity. But when the numerator < denominator they can only vary
between 0 and 1. Expressing things on a log scale solves this problem:
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In the example above, notice that a relative change of 4 times is the same magnitude as a change of 0.25
(i.e. 1/4). On a log-scale these take the same magnitude (2), just with a different sign.

In summary, the values on the log2FoldChange column represent the log-ratio of our two groups being
compared. Positive values mean that the group in the numerator had higher expression, whereas negative
values indicate that the group in the denominator had higher expression.

There is another (more technical) reason why the results are expressed on a log scale. In the negative
binomial model, the average expression is modelled on a log-scale. So, if you recall the logarithmic rule that
log(b)− log(a) = log( b

a ), then you can see that on a log-scale the model really considers things as a difference
between groups. But when we interpret our results, because of the log-scale, we know it’s meaning is really
a ratio of our original expression values.

Two-Factor Models

As before, let’s consider dataset with two varying factors (similar to what we have in our course data).

# create a simulated DESeqDataSeq object
dds <- makeExampleDESeqDataSet(n = 100, m = 12)
colData(dds) <- DataFrame(treatment = factor(rep(c("A", "B"), each = 6)),

genotype = factor(rep(c("WT", "MUT"), 6),
levels = c("WT", "MUT")),

row.names = paste0("sample", 1:12))
dds <- dds[, order(dds$treatment, dds$genotype)] # nicer order

# check the sample information
colData(dds)

## DataFrame with 12 rows and 2 columns
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## treatment genotype
## <factor> <factor>
## sample1 A WT
## sample3 A WT
## sample5 A WT
## sample2 A MUT
## sample4 A MUT
## ... ... ...
## sample9 B WT
## sample11 B WT
## sample8 B MUT
## sample10 B MUT
## sample12 B MUT

Similarly to before, to fit a model with DEseq2 we would first define the design formula and then run the
main DESeq() function to fit the model to each gene:

# fix the code below to model the effects of genotype, treatment and their interaction.
design(dds) <- ~ genotype + treatment + genotype:treatment

# fit the model
dds <- DESeq(dds)

Q1

Taking the example with two factors that we’ve been using

A B
treatment

ex
pr

es
si

on genotype

WT

MUT

After fitting an interaction model (~ genotype + treatment + genotype:treatment) with DESeq, we get
the following coefficients:

resultsNames(dds)

## [1] "Intercept" "genotype_MUT_vs_WT" "treatment_B_vs_A"
## [4] "genotypeMUT.treatmentB"
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Relate the coefficient names from DESeq2 to the βi coefficients in the following notation and interpret their
meaning:

expression = β0 + β1 genotypeMUT + β2 treatmentB + β3 genotypeMUT &treatmentB

Q2

After fitting the model, we obtained a table of results for the comparison of treatment B vs A (for the WT
genotype), using the command results(dds, contrast = list("treatment_B_vs_A")).

Here is the result for two of those genes:

## baseMean log2FoldChange lfcSE stat pvalue padj
## gene63 0.9788188 2.822953 3.1038609 0.9094974 0.363087637 0.75643258
## gene3 39.7444578 1.875454 0.5195792 3.6095633 0.000306713 0.01533565

One of these has a high log2(fold-change) of 2.8. On a linear scale this is 22.8 = 7 times more highly expressed
in treatment B. However its p-value is 0.36. By contrast, the other gene has a lower LFC ~ 1.9 (on a linear
scale 21.9 = 3.7) but a p-value = 0.0003.

How can you explain this apparent contradiction?

Answer

A1.

We have four coefficients, which we can relate to that model notation as meaning:

• β0 = Intercept is the average expression of the reference group. In this case the reference group is
“MUT” genotype in treatment “A.”

• β1 = genotype_MUT_vs_WT is the average difference of “MUT” genotype versus the “WT,” both in
treatment “A.”

• β2 = treatment_B_vs_A is the average difference of treament “B” versus “A,” both for “MUT” geno-
type.

• β3 = genotypeMUT.treatmentB is the “difference of differences,” i.e. whether “WT” and “MUT”
respond differently to the treatment.

A2.

The p-value is a function of both the average estimate of the log(fold-change) as well as the uncertainty in
its estimate (which is related to the variation in expression across replicates).

In this case, the first gene has a higher uncertainty in this estimate, which we can see from the column
named “lfcSE” giving us the standard error of the log(fold-change) estimate. In fact, the statistic used for
the Wald Z test that DESeq uses is calculated as the ratio between the LFC and its error, and given in the
column named “stat.” We can see that for the first gene this ratio is ~0.9, meaning that the average LFC
estimate was even lower than its error, whereas for the second gene we have that stat ~ 3.6, meaning that
the average LFC estimate was 3.6 times higher than its error.

In conclusion, the p-value is a function of both the average estimate for our fold-change as well as the
uncertainty associated with that estimate.

Because now we have a model with an interaction term, to obtain results of interest we need to consider
which genotype or treatment we want to do our comparisons with. Let’s remind ourselves of what these
terms mean with a schematic:
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If we match these β coefficients with how DESeq names them, we have:

• β0 = Intercept

• β1 = genotype_MUT_vs_WT
• β2 = treatment_B_vs_A
• β3 = genotypeMUT.treatmentB

Here is a summary of all the comparisons we may want to make:

Null Hypothesis DESeq contrast Question Answered
β1 = 0 list("genotype_MUT_vs_WT") Are “WT” and “MUT” different

in treatment “A?”
β2 = 0 list("treatment_B_vs_A") Are treatments “A” and “B”

different for “WT?”
β3 = 0 list("genotypeMUT.treatmentB") Do the genotypes respond

differently to the treatment?
β1 + β3 = 0 list(c("genotype_MUT_vs_WT",

"genotypeMUT.treatmentB"))
Are “WT” and “MUT” different

in treatment “B?”

For example to test for the interaction, we would do:

results(dds, contrast = list("genotypeMUT.treatmentB"))

Extra: Numeric Contrasts

So far, specifying our contrasts or comparisons of interest relies on a clear interpretation of each coefficient,
and can sometimes get a little confusing to know what is what (especially as our designs become more
complex). There is an alternative way of defining contrasts, which is less standard and not as thoroughly
documented, but offers greater flexibility and, for some people, might feel more intuitive.

This relies on defining a numeric vector of weights for the terms that we want to test for. Taking our current
object with these four coefficients:
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resultsNames(dds)

## [1] "Intercept" "genotype_MUT_vs_WT" "treatment_B_vs_A"
## [4] "genotypeMUT.treatmentB"

If we wanted to test for the second coefficient (genotype_MUT_vs_WT), with a numeric contrast we would do:

results(dds, contrast = c(0, 1, 0, 0))

The way to construct these numeric contrasts is to first make a vector of coefficient weights for each of our
groups. We can do this based on looking at the model matrix, and checking which samples take the value 1
for each of the coefficients:

mod_mat <- model.matrix(design(dds), data = colData(dds))
mod_mat

## (Intercept) genotypeMUT treatmentB genotypeMUT:treatmentB
## sample1 1 0 0 0
## sample2 1 1 0 0
## sample3 1 0 0 0
## sample4 1 1 0 0
## sample5 1 0 0 0
## sample6 1 1 0 0
## sample7 1 0 1 0
## sample8 1 1 1 1
## sample9 1 0 1 0
## sample10 1 1 1 1
## sample11 1 0 1 0
## sample12 1 1 1 1
## attr(,"assign")
## [1] 0 1 2 3
## attr(,"contrasts")
## attr(,"contrasts")$genotype
## [1] "contr.treatment"
##
## attr(,"contrasts")$treatment
## [1] "contr.treatment"

From this, we can define the following coefficient weights for our four groups of samples:

# coefficient weights
wt_a <- c(1, 0, 0, 0)
mut_a <- c(1, 1, 0, 0)
wt_b <- c(1, 0, 1, 0)
mut_b <- c(1, 1, 1, 1)

Now, to define our contrasts we can express things as differences between the groups we want to compare.
Here are all the contrasts we mentioned earlier:
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# difference between mutant and wild-type
mut_a - wt_a # under treatment A
mut_b - wt_b # under treatment B

# difference between treatments
wt_b - wt_a # for wild-type
mut_b - mut_a # for mutant

# difference of differences (interaction)
# does the mutant's response to treatment different from the wild-type's response?
(mut_b - mut_a) - (wt_b - wt_a)

With numeric contrasts you can even define more unusual contrasts. For example, let’s say we were interested
in whether the average of the samples in treatment “B” was different from the average of the samples in
treatment “A.” This would be the contrast for that question:

# average of b_mut and b_wt minus average of a_mut and a_wt
(mut_b + wt_b)/2 - (mut_a + wt_a)/2

Summary

KEY POINTS

• Differential expression tests are based on linear models, where the gene expression is modelled as an
outcome of several variables of interest (e.g. treatment, genotype, infection status, etc.).

• Linear models use indicator or dummy variables to encode categorical variables in a model matrix.
• To define models in R/DESeq2 we use the formula ~ syntax.
• Some common models are:

– Single factor: ~ variable1
– Two factor, additive: ~ variable1 + variable2
– Two factor, interaction: ~ variable1 + variable2 + variable1:variable2

• Interpreting our model coefficients allows us to define hypothesis/comparisons of interest.
• In DESeq2 we use the results() function to obtain the log2 fold-change in gene expression between

groups of interest (“contrast”).
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