

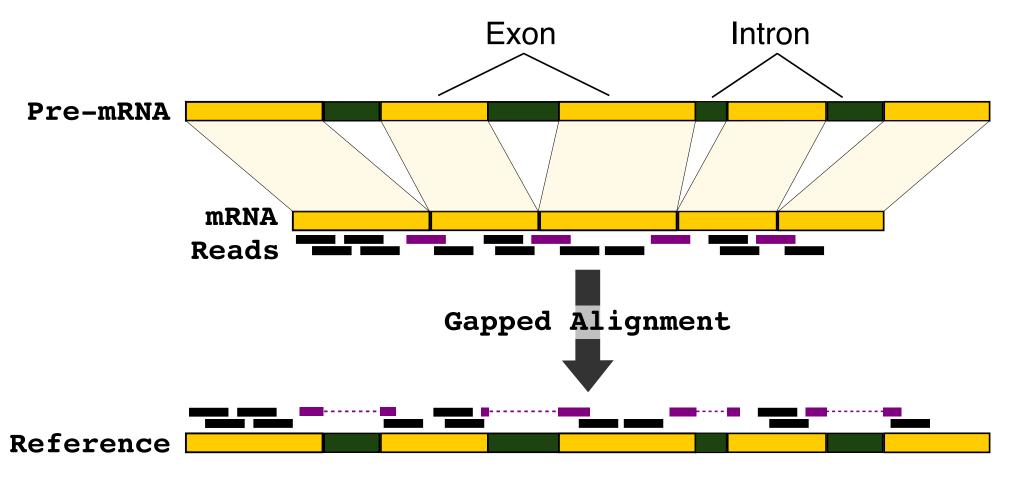
Short Read Alignment

April 2021

Differential Gene Expression Analysis Workflow

Alignment

AIM: Given a reference sequence and a set of short reads, align each read to the reference sequence finding the most likely origin of the read sequence.


Reference: ...GCTGATGTGCCGCCTCACTTCGGTGGTACGCT...

Reads:

GATGTGCCGCCTCACTTCGG
TGTGCCGGCTCACTTCGGTG
CTGATGTGCCGGCTCACTTC
GGCTCACTTCGGTGGTACGC
CCGCCTCACTTCGGTGGTAC
CCGCCTCACTTCGGTGGTAC

Alignment - Gap aware alignment

Aligners: STAR, HISAT2

SAM format

Sequence Alignment/Map (SAM) format is the standard format for files containing aligned reads.

Definition of the format is available at https://samtools.github.io/hts-specs/SAMv1.pdf.

Two main parts:

- Header
 - contains meta data (source of the reads, reference genome, aligner, etc.)
 - header lines start with "@"
 - header fields have standardized two-letter codes.
- Alignment section
 - 1 line for each alignment
 - contains details of alignment position, mapping, base quality etc.
 - 11 required fields, but other content may vary depending on aligner and other tools used to create the file

SAM format - header

•••••••••••


```
SRR7657883.sra.4486068 163
                               3207176 60
                                           142M6121N8M
                                                              3207227 6220
   CTCCTTTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCTTGATTGCAAAATTACAAGTCAAGAATTTGCAAGATTGAAGTGTCTGTTGG
ATTAATTAACTGCAATTCATCTCCAGTAAAATTTGGTAAGTTCCAATGTTTATGAAAGA AAFFFAJFJJJJFFFFJJJJJJFFJJJJJJFJJJJ
F-7-<FFJ<FJ--F<<F<JA7
                     AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:150
YT:7:CP XS:A:- NH:i:1
SRR7657883.sra.24078254 99
                               3207179 60
                                           139M6121N11M
                                                              3213440 290
   CTTTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCTTGATTGCAAAATTACAAGTCAAGAATTTGCAAGATTGAAGTGTCTGTTGGAT
33333333333333333335F
                     AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:150
  YT:Z:CP XS:A:- NH:i:1
SRR7657883.sra.5094794
                  163
                               3207181 60
                                           43M1D93M6121N14M
                                                                    3213440
                         1
288
       TTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCCTGATTGCAAATTACAAGTCAAGAATTTGCAAGATTGAGGTGTCTGTTGGA
TTAATTAACTGAAATTCATCTCCAGTAAAATTTGGTAAGTTCCAATGTTTATGAAAGAAGAGGTG -AAFFJJFJJFFJF<AAFFJJJJAF77FJ
-F<F5]--A7F5JFF-F-F3-F3-J3F-A3F3F3J333<FAF3-AAA<A-F333FA-<7FA<3377F--F33A7FF<-7-AFF33A-7FA77AF
JJ<A---A-7--7-<F-7-7--<7<
                        AS:i:-17
                                     XN:i:0 XM:i:3 XO:i:1 XG:i:1 NM:i:4
                                                                       MD:
                YS:i:0 YT:Z:CP XS:A:-
                                  NH:i:1
Z:35T7^A30A23C52
```



```
SRR7657883.sra.4486068 163
                              3207176 60 142M6121N8M
                                                              3207227 6220
   CTCCTTTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCTTGATTGCAAAATTACAAGTCAAGAATTTGCAAGATTGAAGTGTCTGTTGG
ATTAATTAACTGCAATTCATCTCCAGTAAAATTTGGTAAGTTCCAATGTTTATGAAAGA AAFFFAJFJJJJFFFFJJJJJJFFJJJJJJFJJJJ
AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:150
F-7-<FFJ<FJ--F<<F<JA7
YT:Z:CP XS:A:- NH:i:1
SRR7657883.sra.24078254 99
                     1
                               3207179 60
                                           139M6121N11M
                                                              3213440 290
   CTTTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCTTGATTGCAAAATTACAAGTCAAGAATTTGCAAGATTGAAGTGTCTGTTGGAT
AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:150
JJJJJJJJJJJJJJJJJJJJ
  YT:Z:CP XS:A:- NH:i:1
SRR7657883.sra.5094794 163
                               3207181 60
                                           43M1D93M6121N14M
                                                                    3213440
                        1
       TTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCCTGATTGCAAATTACAAGTCAAGAATTTGCAAGATTGAGGTGTCTGTTGGA
TTAATTAACTGAAATTCATCTCCAGTAAAATTTGGTAAGTTCCAATGTTTATGAAAGAAGAGAGTG -AAFFJJFJJFFJF<AAFFJJJJAF77FJ
-F<FFJ--A7FFJFFF-F-FJ-FJ<JJF-AJFJFJJJJJJ<FAFJ-AAA<A-FJJJFA-<7FA<JJ77F--FJJA7FF<-7-AFFJJA-7FA77AF
JJ<A---A-7--7-<F-7-7--<7<
                        AS:i:-17
                                     XN:i:0 XM:i:3 XO:i:1 XG:i:1 NM:i:4
                                                                       MD:
Z:35T7^A30A23C52
                YS:i:0 YT:7:CP XS:A:- NH:i:1
```



```
SRR7657883.sra.4486068 163
                              3207176 60 142M6121N8M
                                                             3207227 6220
   CTCCTTTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCTTGATTGCAAAATTACAAGTCAAGAATTTGCAAGATTGAAGTGTCTGTTGG
ATTAATTAACTGCAATTCATCTCCAGTAAAATTTGGTAAGTTCCAATGTTTATGAAAGA AAFFFAJFJJJJFFFFJJJJJJFFJJJJJJJFJJJJ
AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:150
F-7-<FFJ<FJ--F<<F<JA7
YT:Z:CP XS:A:-
SRR7657883.sra.24078254 99
                              3207179 60
                                           139M6121N11M
                                                             3213440 290
   CTTTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCTTGATTGCAAAATTACAAGTCAAGAATTTGCAAGATTGAAGTGTCTGTTGGAT
AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:150
JJJJJJJJJJJJJJJJJJJJJ
  YT:Z:CP XS:A:- NH:i:1
SRR7657883.sra.5094794 163
                              3207181 60
                                          43M1D93M6121N14M
                                                                   3213440
      TTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCCTGATTGCAAATTACAAGTCAAGAATTTGCAAGATTGAGGTGTCTGTTGGA
TTAATTAACTGAAATTCATCTCCAGTAAAATTTGGTAAGTTCCAATGTTTATGAAAGAAGAGGTG
-F<FFJ--A7FFJFFF-F-FJ-FJ<JJF-AJFJFJJJJJJ<FAFJ-AAA<A-FJJJFA-<7FA<JJ77F--FJJA7FF<-7-AFFJJA-7FA77AF
JJ<A---A-7--7-<F-7-7--<7<
                        AS:i:-17
                                    XN:i:0 XM:i:3 XO:i:1 XG:i:1
                                                                      MD:
                YS:i:0 YT:Z:CP XS:A:- NH:i:1
Z:35T7^A30A23C52
```



```
SRR7657883.sra.4486068 163
                               3207176 60
                                            142M6121N8M
                                                              3207227 6220
   CTCCTTTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCTTGATTGCAAAATTACAAGTCAAGAATTTGCAAGATTGAAGTGTCTGTTGG
ATTAATTAACTGCAATTCATCTCCAGTAAAATTTGGTAAGTTCCAATGTTTATGAAAGA
                                               AAFFFAJFJJJFFFFJJJJJJFFJJJJJJJJJJJJJJ
F-7-<FFJ<FJ--F<<F<JA7
                     AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0
                                                    NM:i:0
YT:7:CP XS:A:-
SRR7657883.sra.24078254 99
                                            139M6121N11M
                                                              3213440 290
                               3207179 60
   CTTTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCTTGATTGCAAAATTACAAGTCAAGAATTTGCAAGATTGAAGTGTCTGTTGGAT
AS:i:0 XN:i:0 XM:i:0
                                        XO:i:0 XG:i:0
                                                     NM:i:0
  YT:Z:CP XS:A:- NH:i:1
SRR7657883.sra.5094794
                               3207181 60
                                            43M1D93M6121N14M
                                                                     3213440
288
       TTCCCATTAATTGATTCATGTTCTCTTCTAGTAGCCTGATTGCAAATTACAAGTCAAGAATTTGCAAGATTGAGGTGTCTGTTGGA
TTAATTAACTGAAATTCATCTCCAGTAAAATTTGGTAAGTTCCAATGTTTATGAAAGAAGAGGTG
-F<FFJ--A7FFJFFF-F-FJ-FJ<JJF-AJFJFJJJJJJ<FAFJ-AAA<A-FJJJFA-<7FA<JJ77F--FJJA7FF<-7-AFFJJA-7FA77AF
JJ<A---A-7--7-<F-7-7---<7<
                         AS:i:-17
                                     XN:i:0 XM:i:3 XO:i:1 XG:i:1
                                                                        MD:
Z:35T7^A30A23C52
                YS:i:0 YT:Z:CP XS:A:-
                                   NH:i:1
```



```
QNAME SRR7657883.sra.4486068
FLAG
        163
RNAME 1
POS
       3207176
MAPQ
       60
       142M6121N8M
CIGAR
RNEXT =
PNEXT 3207227
TLEN
       6220
SEQ
       CTCCTTTCCCATTAATTGATTCATGTTCTCTTCTA...
       AAFFFAJFJJJJFFFFJJJJJJFJJJJJ....
QUAL
       AS:i:0
       XN:i:0
       XM:i:0
       X0:i:0
       XG:i:0
       NM:i:0
       MD:Z:150
       YS:i:0
       YT:Z:CP
       XS:A:-
        NH:i:1
```


QNAME SRR7657883.sra.4486068

FLAG 163 RNAME 1 POS 3207176 **MAPQ** 60 142M6121N8M **CIGAR** RNEXT PNEXT 3207227 **TLEN** 6220 SEQ CTCCTTTCCCATTAATTC CATGT QUAL **AAFFFAJFJJJFFFFJJ** FJJJJ AS:i:0

> XN:i:0 XM:i:0 X0:i:0

XG:i:0 NM:i:0 MD:Z:150 YS:i:0 YT:Z:CP XS:A:-NH:i:1

A J		

-	Bit		Description	
_	1	0x1	template having multiple segments in sequencing	
	2	0x2	each segment properly aligned according to the aligner	
	4	0x4	segment unmapped	
	8	0x8	next segment in the template unmapped	
	16	0x10	SEQ being reverse complemented	
	32	0x20	SEQ of the next segment in the template being reverse complemented	
	64	0x40	the first segment in the template	
	128	0x80	the last segment in the template	
	256	0x100	secondary alignment	
	512	0x200	not passing filters, such as platform/vendor quality controls	
	1024	0x400	PCR or optical duplicate	
	2048	0x800	supplementary alignment	

Explain SAM flags

HISAT2

Fast and good performance in published benchmark tests

First need to generate an index for the reference genome with the hisat2-build command

Indexing is where all the work takes place and so is computationally intensive

Then we can align reads to the genome with hisat2

Practical

- 1. Create an index to the genome with HISAT2
- 2. Align reads to the genome with **HISAT2** and store outcome in a SAM file
- 3. Convert the SAM file (human readable text) to BAM (binary) with samtools
- 4. Index the BAM file with samtools

