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DNA Sequencing RNA Sequencing Single-Cell

HTS Applications - Overview

▪ Genome Assembly

▪ SNPs/SVs/CNVs

▪ DNA methylation

▪ DNA-protein interactions
(ChIPseq)

▪ Chromatin Modification
(ATAC-seq/ChIPseq)

·

·

·

·

·

▪ Transcriptome Assembly

▪ Differential Gene
Expression

▪ Fusion Genes

▪ Splice variants

·

·

·

·

▪ RNA/DNA

▪ Low-level RNA/DNA
detection

▪ Cell-type classification

▪ Dissection of
heterogenous cell
populations

·

·

·

·
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https://emea.illumina.com/content/dam/illumina-marketing/documents/applications/ngs-library-prep/for-all-you-seq-rna.pdf
https://emea.illumina.com/content/dam/illumina-marketing/documents/applications/ngs-library-prep/for-all-you-seq-rna.pdf
https://emea.illumina.com/content/dam/illumina-marketing/documents/applications/ngs-library-prep/for-all-you-seq-rna.pdf


Experimental Design

Library Preparation

Sequencing

Bioinformatics Analysis

RNAseq Workflow

Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
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Designing the right experiment

A good experiment should:
▪ Have clear objectives

▪ Have sufficient power

▪ Be amenable to statisical analysis

▪ Be reproducible

▪ More on experimental design later

·

·

·

·

·

4/45



Designing the right experiment

Practical considerations for RNAseq
▪ Coverage: how many reads?

▪ Read length & structure: Long or short reads? Paired or Single end?

▪ Controlling for batch effects

▪ Library preparation method: Poly-A, Ribominus, other?

·

·

·

·
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Designing the right experiment - How many reads do we need?

The coverage is defined as:

The amount of sequencing needed for a given sample is determined by the goals of the experiment and
the nature of the RNA sample.

Read Length × Number of Reads
Length of Target Sequence

▪ For a general view of differential expression: 5–25 million reads per sample

▪ For alternative splicing and lowly expressed genes: 30–60 million reads per sample.

▪ In-depth view of the transcriptome/assemble new transcripts: 100–200 million reads

▪ Targeted RNA expression requires fewer reads.

▪ miRNA-Seq or Small RNA Analysis require even fewer reads.

·

·

·

·

·
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Designing the right experiment - Read length

Long or short reads? Paired or Single end?
The answer depends on the experiment:

▪ Gene expression – typically just a short read e.g. 50/75 bp; SE or PE.

▪ kmer-based quantification of Gene Expression (Salmon etc.) - benefits from PE.

▪ Transcriptome Analysis – longer paired-end reads (such as 2 x 75 bp).

▪ Small RNA Analysis – short single read, e.f. SE50 - will need trimming.

·

·

·

·
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Designing the right experiment - Replication

Biological Replication

Technical Replication

▪ Measures the biological variations between individuals

▪ Accounts for sampling bias

·

·

▪ Measures the variation in response quantification due to imprecision in the technique

▪ Accounts for technical noise

·

·
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Each replicate is from an indepent biological
individual

Designing the right experiment - Replication

Biological Replication

▪ In Vivo:

▪ In Vitro:

·

▪ Patients

▪ Mice

-

-

·

▪ Different cell lines

▪ Different passages

-

-
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Replicates are from the same individual but
processed separately

Designing the right experiment - Replication

Technical Replication

▪ Experimental protocol

▪ Measurement platform

·

·

10/45



Designing the right experiment - Batch effects

▪ Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

▪ Batch effects are problematic if they are confounded with the experimental variable.

·

·
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Designing the right experiment - Batch effects
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Designing the right experiment - Batch effects
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Designing the right experiment - Batch effects

▪ Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

▪ Batch effects are problematic if they are confounded with the experimental variable.

▪ Batch effects that are randomly distributed across experimental variables can be controlled for.

·

·

·
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Designing the right experiment - Batch effects
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▪ Randomise all technical steps in data generation in order to avoid batch effects.

·

·

·

·

15/45



Designing the right experiment - Batch effects

▪ Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

▪ Batch effects are problematic if they are confounded with the experimental variable.

▪ Batch effects that are randomly distributed across experimental variables can be controlled for.

▪ Randomise all technical steps in data generation in order to avoid batch effects.

·

·

·

·

16/45



Designing the right experiment - Batch effects

▪ Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

▪ Batch effects are problematic if they are confounded with the experimental variable.

▪ Batch effects that are randomly distributed across experimental variables can be controlled for.

▪ Randomise all technical steps in data generation in order to avoid batch effects.

·

·

·

·

17/45



Designing the right experiment - Batch effects

▪ Batch effects are sub-groups of measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

▪ Batch effects are problematic if they are confounded with the experimental variable.

▪ Batch effects that are randomly distributed across experimental variables can be controlled for.

▪ Randomise all technical steps in data generation in order to avoid batch effects

▪ Record everything: Age, sex, litter, cell passage ..

·

·

·

·

·
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Experimental Design

Library Preparation

Sequencing

Bioinformatics Analysis

RNAseq Workflow

Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
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Library preparation

 - Ribosomal RNA

 - Poly-A transcripts

 - Other RNAs e.g. tRNA, miRNA etc.

Total RNA extraction
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Poly-A Selection

Poly-A transcripts e.g.:

Ribominus selection

Poly-A transcripts + Other mRNAs e.g.:

Library preparation

▪ mRNAs

▪ immature miRNAs

▪ snoRNA

·

·

·

▪ tRNAs

▪ mature miRNAs

▪ piRNAs

·

·

·
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Library preparation
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Library preparation
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Experimental Design

Library Preparation

Sequencing

Bioinformatics Analysis

RNAseq Workflow

Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.

24/45



Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis

35/45



Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Sequencing by synthesis
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Experimental Design

Library Preparation

Sequencing

Bioinformatics Analysis

RNAseq Workflow

Image adapted from: Wang, Z., et al. (2009), Nature Reviews Genetics, 10, 57–63.
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Case Study
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Differential Gene Expression Analysis Workflow

Quantification of gene expression

Data Exploration

Quality Control

Read alignment

Raw Fastq data

Differential Expression Analysis

Gene Annotation

Data Visualisation

Gene Set testing

Quality Control
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