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> dds <- DESegDataSetFromMatrix(cnts, DataFrame(cond), ~

> dds <- DESeq(dds)
> results(dds)

log2 fold change (MLE): cond 2 vs 1

Wald test p-value: cond 2 vs 1

DataFrame with 1000 rows and 6 columns
baseMean log2FoldChange

<numeric>
1 97.3140
2 109.9860
3 98.8111
4 103.2615
5 97.9406
996 86.8057
997 101.4437
998 78.1356
999 89.2920
1000 103.5569

<numeric>
-0.682067
-0.228819
0.104291
0.306400
0.316338

0.0467703
-0.2070806
-0.6372790

0.7554725
-0.0728875

1fcSE

<numeric>

OCO0OOO0O0O COO0OO0OO0O

. 344525
.450720
.462113
.297682
. 357242
. 287042
. 339886
.369515

.306192
. 348655

stat

<numeric>

-1.
-0.

979730
507676

.225683
.029284
.885501
.162939
.609264
. 7124637

.467314
.2090563

cond)

pvalue padj
<numeric> <numeric>
0.0477339 0.745842
0.6116808 0.944354
0.8214483 0.978382
0.3033460 0.944354
0.3758864 0.944354
0.8705668 0.980044
0.5423495 0.944354
0.0845930 0.824310
0.0136131 0.614613
0.8344065 0.978382
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® Statistical Concepts - Bite size statistics
e PPDAC Cycle
® Hypothesis testing
® Type | and Il errors
® Power Analysis
® Statistical aspects of bulk RNA-seq analysis
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Data literacy

The ability to not only carry out statistical analysis on real-world
problems, but also to understand and critique any conclusions
drawn by others on the basis of statistics.



Statistics as an investigative process of problem-solving and decision-making

e Understanding and defining
the problem.
* How do we go about

answering this question?

| . PROBLEM
® Interpretation

e Conclusions

e New ideas ¢ \\What to measure and how?

e Study design ?

PLAN

e Communication

CONCLUSION

PPDAC Cycle

ANALYSIS DATA

 Sort data e Collection
e Construct table, graphs * Management
* Look for patterns e Cleaning

e Hypothesis generation

R. J. MacKay. R. W. Oldford. "Scientific Method, Statistical Method and the Speed of Light." Statist. Sci. 15 (3) 254 - 278, August 2000.
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Basics on inferential statistics and hypothesis testing

Population: the complete set of individuals Sample: smaller set of individuals that is
that we are interested in representative of the population

Variable: what we are interested in measuring



Basics on inferential statistics and hypothesis testing

Inference means two things:
1. Estimating population parameters
2. Testing hypothesis regarding the population

distribution
Null Hypothesis (Ho)

Assumption about the
population distribution
and its parameters
(mean, variance, etc) inference

Population: the complete set of individuals Sample: smaller set of individuals that is
that we are interested in representative of the population

Variable: what we are interested in measuring

Slide content adapted from Matt Castle



Basics on inferential statistics and hypothesis testing

Null Hypothesis (Ho)
Assumption about the
population distribution

and its parameters

(mean, variance, etc)

‘—i—l

Choose test
Based on data and Hg

v

Calculate test statistic, interpret results

Slide content adapted from Matt Castle



A simple example

A neurologist is testing the effect of a drug on response time by
injecting 100 rats with a unit dose of the drug subjecting each to
neurological stimulus and recording its response time. The
neurologist knows that the mean response time for rats not
injected with the drug is 1.2 seconds. The mean of the 100
injected rats response times is 1.05 seconds with the sample
standard deviation of 0.5 seconds. Do you think that the drug
has an effect on response time ?

Example adapted from Sal Khan
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Calculated test statistic

This means that the sample mean (1.05) is 3
standard deviations away from the mean

What is the probability of observing a test
statistic as extreme as 1.057

p-value = 2 min[P(t = tops|Ho),P(t = tops|Ho)]




Key Concepts - Hypothesis Testing

® All statistical tests are based on assumptions!
® All statistics can be wrong
® Statistical tests are probabilistic in nature

® There is always a chance that the result is wrong (even when all assumptions
met pertfectly):

® Either significant result when no difference (Type I),

® Or insignificant results when there is an actual ditterence (Type Il)

Slide content adapted from Matt Castle
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s this result signiticant or not?
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Type | and Type Il Errors

® All hypothesis tests involve making a decision:

s this result significant or not?

® This decision can be wrong in two ways:

Type | error or False positive Type Il error or False negative
This is when you reject the null This is when you fail to reject the
hypothesis when it is true null hypothesis when it isn't true

"You're pregnant !° "You're not pregnant”

Slide content adapted from Matt Castle



Type | and Type Il Errors

oZJ=’.28
ru#=1.2s

if p-value > o = do not reject Hg
if p-value < a = reject Hpin favour of Hj



Type | and Type Il Errors

oZJ=’.28
ru#=1.2s

if p-value > o = do not reject Hg
if p-value < a = reject Hpin favour of Hj

a=0.05 — the type | error, the probability of rejecting
Ho when Hp is correct

u=12s



Type | and Type Il Errors

if p-value > o = do not reject Hg
if p-value < a = reject Hpin favour of Hj

a=0.05 — the type | error, the probability of rejecting

0-

J:

1.

L #

1.25s
1.2s

Ho when Hg is correct

u=12s

Suppose Hj true:



Type | and Type Il Errors

if p-value > o = do not reject Hg
if p-value < a = reject Hpin favour of Hj

a=0.05 — the type | error, the probability of rejecting

0-

J:
U Z

1.

1.25s
1.2s

Ho when Hg is correct

u=12s

Suppose Hj true:

u=1.05s

u=12s



Type | and Type Il Errors

if p-value > o = do not reject Hg
if p-value < a = reject Hpin favour of Hj

a=0.05 — the type | error, the probability of rejecting

0-

J:
U Z

1.

1.2s
1.2s

Ho when Hp is correct

u=12s

Suppose Hitrue:

-2

Depending on your sampling, you
might fail to reject Ho

u=1.05s

u=12s



Type | and Type Il Errors

if p-value > o = do not reject Hg
if p-value < a = reject Hpin favour of Hj

a=0.05 — the type | error, the probability of rejecting

0-

J:
U Z

1.

1.2s
1.2s

Ho when Hp is correct

u=12s

Suppose Hitrue:

-2

u=1.05s

Depending on your sampling, you
might fail to reject Ho

u=12s



Type | and Type Il Errors

o:u=172s

cu#12s Suppose Hitrue:
it p-value > a = do not reject Ho 8 — the type Il error, the probability of not rejecting
if p-value < a = reject Hpin favour of Hj Ho when H1 is correct

a=0.05 — the type | error, the probability of rejecting
Ho when Hp is correct

u=1.2s u=1.05s u=12s
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Power Analysis

Effect Size (0)

Significance
Level ()

Sample Size (n)

Power (1 — 0)

® The four concepts are linkea
® |f we know three, we can work out the forth

® Power calculation: Aim is to define the
orobability (1-0) to detect an effect size of
interest (0) at the a level with a sample size of n
biological replicates

® Sample size calculation: Aim is to deflne the
sample size (n) allowing to detect an effect size
of interest (0) at the & level with a given

probability (1 — 0).




Power Analysis in Differential Expression Analysis
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Linear Modeling

Model the expression ot each gene as linear combination of
explanatory factors (eg. treatment, age, sex, etc.)



Statistical Aspects of Differential Expression Analysis
Linear Modeling

Model the expression ot each gene as linear combination of
explanatory factors (eg. treatment, age, sex, etc.)



Statistical Aspects of Differential Expression Analysis
Linear Modeling

Model the expression ot each gene as linear combination of
explanatory factors (eg. treatment, age, sex, etc.)



Statistical Aspects of Differential Expression Analysis
Linear Modeling

Model the expression ot each gene as linear combination of
explanatory factors (eg. treatment, age, sex, etc.)

y =BX + ¢

Express the count data vector of a given gene, y, as a function
parameter vector (B) times a design matrix (X) plus a stochastic error
vector &



Statistical Aspects of Differential Expression Analysis
Linear Modeling

® Collect the information related to each sample for predictors of interest
® Define 3, the sets of parameters we are interested in
® build the X matrix that relates the sample information with the [

® cstimate the 3 and use statistical inference to assess signiticance (p-values)



Construction of Design Matrix




Statistical Aspects of Differential Expression Analysis
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e large dynamic range

Number of genes




Statistical Aspects of Differential Expression Analysis
Characteristics of RNA-seq data

This plot illustrates some common features of RNA-seq count
data:

e a low number of counts associated with a large proportion of
genes

e a long right tail due to the lack of any upper limit for
expression

Number of genes

e large dynamic range

| L Looking at the shape of the histogram, we see that it is not
' normally distributed.



Statistical Aspects of Differential Expression Analysis
Characteristics of RNA-seq data

To assess the properties of the data we are working with, we can
look at the mean-variance relationship.

For the genes with high mean expression, the variance across
replicates tends to be greater than the mean (scatter is above the
red line).
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Statistical Aspects of Differential Expression Analysis
Characteristics of RNA-seq data

To assess the properties of the data we are working with, we can
look at the mean-variance relationship.

For the genes with high mean expression, the variance across
replicates tends to be greater than the mean (scatter is above the
red line).

Essentially, the Negative Binomial is a good approximation for
data where the mean < variance, as is the case with RNA-Seq

count data.

111111111111111



Statistical Aspects of Differential Expression Analysis

Negative Binomial Regression

auan

uoneloute

e y ~ NB(u, ¢)
Ely] = p=s 2%

sardureg

where

» y denotes the (n x 1) count vector of
expression intensities of a given gene,

X denotes the (n x p) design/predictor matrix,

XIIer

S ERET |
Uetssaadxa auan

UoIssaidEa auan .

3 denotes the (p x 1) parameter vector,

¢ denotes the dispersion parameter,

o pelouue

s denotes the scaling factor vector (library size),

ardureg
vvyyvyyvyy

Ely] = p denotes the expectation of y
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Negative Binomial Regression

o B 0o Ut
auan

e y ~ NB(u, ¢)
Ely] = p=s 2%

sardureg

where

» y denotes the (n x 1) count vector of
expression intensities of a given gene,

X denotes the (n x p) design/predictor matrix,

XIIer

S[34a]
Uetssaadxa auan

UoIssaidEa auan .

3 denotes the (p x 1) parameter vector,

¢ denotes the dispersion parameter,

o pelouue

s denotes the scaling factor vector (library size),

ardureg
vvyyvyyvyy

E[ly] = p denotes the expectation of y

After the model is fit, coefficients are estimated for each sample group along with their standard error. The

coefticents are the estimates for the log2 fold-changes, and will be used as input for hypothesis testing.
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Negative Binomial Regression

Recall the simple linear regression model for expression:

y = Bot+ B1X + €

e where X=0 (untreated)

or X=1 (treated)
* v is the observed "expression” of the gene
® £ is the measurement noise term

e The parameter of interest is 1 (the treatment effect)
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Statistical Aspects of Differential Expression Analysis
General Hypothesis

® |s the RNA abundance level for any of the m genes affected by treatment
® | et Hpj denote the null hypothesis for gene j
® Hpy: The RNA abundance level for gene j is not affected by treatment
® Hq: The RNA abundance level for gene j is affected by treatment
® The global null hypothesis is Hos and Hp2 and .. and .. Hom are all true
® The global alternative is Hy1orHizor .. or .. Hynis true

® |n other words, under the alternative at least one of the alternative hypothesis is true



Statistical Aspects of Differential Expression Analysis
General Hypothesis

® Reformulation
® The global null hypothesis: B11=0and B21=0 and fm=0
® [n other words, all of the Bj1 are equal to zero
® The global alternative is B11 #0or B21#0or...or Bm #0

® |n other words, at least one of the B;1is not equal to zero.
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Multiplicity Correction

® A gene with a significance cut-off of & = 0.05, means there is a 5% chance it is
a talse positive.

® |f we test for 20,000 genes for differential expression at o« = 0.05, we would
expect to find 1,000 genes by chance

e |f we found 3000 genes to be differentially expressed total, roughly one thira
of our genes are false positives!

® The more genes we test, the more we inflate the tfalse positive rate. This is the
multiple testing problem.



Multiplicity Correction

® Bonferroni: The adjusted p-value is calculated by:  * k (k = total number ot
tests). This is a very conservative approach

® FDR/Benjamini-Hochberg: Benjamini and Hochberg (1995) defined the

concept of FDR and created an algorithm to control the expected FDR below
a specitfied level given a list of independent p-values.



Multiplicity Correction

Examples of expected overall distribution

Frequency
Frequency
requency

|
|
|

(@) : the most desirable shape
(b) : very low counts genes usually have large p-values

(c) : do not expect positive tests after correction



Multiplicity Correction

Examples of unexpected overall distribution

Frequency
|
[
|
requency
]
Frequency

p-values p-values p-values

(a) : indicates a batch effect (confounding hidden variables)

(b) : the test statistics may be inappropriate (due to strong
correlation structure for instance)

(c) : discrete distribution of p-values : unexpected



Conclusions

® Assumptions assumptions assumptions



