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library(EnsDb.Mmusculus.v79)
library(DESeq2)
library(tidyverse)

Before starting this section, we will make sure we have all the relevant objects from the Differential Expression
analysis.
ddsObj.interaction <- readRDS("RObjects/DESeqDataSet.interaction.rds")
results.interaction.11 <- readRDS("RObjects/DESeqResults.interaction_d11.rds")
results.interaction.33 <- readRDS("RObjects/DESeqResults.interaction_d33.rds")

Overview

• Getting annotation
• Visualising DE results

Adding annotation to the DESeq2 results

We have a list of significantly differentially expressed genes, but the only annotation we can see is the Ensembl
Gene ID, which is not very informative.

There are a number of ways to add annotation. One method is to do this using a Bioconductor annotation
package. These packages which are re-built every periodically with the latest annotations. These packages
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are listed on the annotation section of the Bioconductor, and are installed in the same way as regular
Bioconductor packages.

An alternative approach is to use biomaRt, an interface to the BioMart resource. Using BioMart ensures that
you are able to get the latest annotations for the GeneIDs, and can match the version of the gene annotation
that was used for read counting.

Using an annotation packages means that you may not have the exact same version of the gene annotations
as was used to do the counting.

Today we will use the annotation package method. A workflow for annotation with biomaRt is included in
the extended materials section acessible on the course website.

Query the database

We use the select function to query the database. Now we need to set up a query. This requires us to tell it
what we want and what we have. For this we need to specify three things:

(a) What type of information we are going to search the dataset on - called keytypes. In our case this is
Ensembl Gene IDs

(b) A vector of the keys for our filter - the Ensembl Gene IDs from our DE results table
(c) What columns (columns) of the dataset we want returned.

# what can we search for? 'columns'
columns(EnsDb.Mmusculus.v79)

## [1] "ENTREZID" "EXONID" "EXONIDX"
## [4] "EXONSEQEND" "EXONSEQSTART" "GENEBIOTYPE"
## [7] "GENEID" "GENENAME" "GENESEQEND"
## [10] "GENESEQSTART" "INTERPROACCESSION" "ISCIRCULAR"
## [13] "PROTDOMEND" "PROTDOMSTART" "PROTEINDOMAINID"
## [16] "PROTEINDOMAINSOURCE" "PROTEINID" "PROTEINSEQUENCE"
## [19] "SEQCOORDSYSTEM" "SEQLENGTH" "SEQNAME"
## [22] "SEQSTRAND" "SYMBOL" "TXBIOTYPE"
## [25] "TXCDSSEQEND" "TXCDSSEQSTART" "TXID"
## [28] "TXNAME" "TXSEQEND" "TXSEQSTART"
## [31] "UNIPROTDB" "UNIPROTID" "UNIPROTMAPPINGTYPE"
# what can we search with? 'keytypes'
keytypes(EnsDb.Mmusculus.v79)

## [1] "ENTREZID" "EXONID" "GENEBIOTYPE"
## [4] "GENEID" "GENENAME" "PROTDOMID"
## [7] "PROTEINDOMAINID" "PROTEINDOMAINSOURCE" "PROTEINID"
## [10] "SEQNAME" "SEQSTRAND" "SYMBOL"
## [13] "TXBIOTYPE" "TXID" "TXNAME"
## [16] "UNIPROTID"
# lets set it up
ourCols <- c("SYMBOL", "GENEID", "ENTREZID")
ourKeys <- rownames(results.interaction.11)[1:1000]

# run the query
annot <- AnnotationDbi::select(EnsDb.Mmusculus.v79,

keys=ourKeys,
columns=ourCols,
keytype="GENEID")
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One-to-many relationships

Let’s inspect the annotation.
head(annot)

## SYMBOL GENEID ENTREZID
## 1 Gnai3 ENSMUSG00000000001 14679
## 2 Cdc45 ENSMUSG00000000028 12544
## 3 Scml2 ENSMUSG00000000037 107815
## 4 Apoh ENSMUSG00000000049 11818
## 5 Narf ENSMUSG00000000056 67608
## 6 Cav2 ENSMUSG00000000058 12390
length(unique(annot$ENTREZID))

## [1] 925
sum(is.na(annot$ENTREZID)) # Why are there NAs in the ENTREZID column?

## [1] 94
dim(annot) # why are there more than 1000 rows?

## [1] 1018 3
# find all rows containing duplicated ensembl ids
annot %>%

add_count(GENEID) %>%
dplyr::filter(n>1)

## SYMBOL GENEID ENTREZID n
## 1 Trappc10 ENSMUSG00000000374 216131 2
## 2 Trappc10 ENSMUSG00000000374 102641872 2
## 3 Rpl13 ENSMUSG00000000740 270106 2
## 4 Rpl13 ENSMUSG00000000740 100040416 2
## 5 Chmp1a ENSMUSG00000000743 234852 2
## 6 Chmp1a ENSMUSG00000000743 102642050 2
## 7 Ndufa11 ENSMUSG00000002379 69875 2
## 8 Ndufa11 ENSMUSG00000002379 239760 2
## 9 Flii ENSMUSG00000002812 14248 2
## 10 Flii ENSMUSG00000002812 102642960 2
## 11 Hmgn2 ENSMUSG00000003038 15331 4
## 12 Hmgn2 ENSMUSG00000003038 627375 4
## 13 Hmgn2 ENSMUSG00000003038 671242 4
## 14 Hmgn2 ENSMUSG00000003038 100503799 4
## 15 Rps11 ENSMUSG00000003429 27207 2
## 16 Rps11 ENSMUSG00000003429 674896 2
## 17 Taf6l ENSMUSG00000003680 67706 2
## 18 Taf6l ENSMUSG00000003680 225895 2
## 19 Etv1 ENSMUSG00000004151 14009 2
## 20 Etv1 ENSMUSG00000004151 432800 2
## 21 Ppp1cc ENSMUSG00000004455 19047 2
## 22 Ppp1cc ENSMUSG00000004455 434233 2
## 23 Etfb ENSMUSG00000004610 110826 2
## 24 Etfb ENSMUSG00000004610 102642019 2
## 25 Hnrnpa2b1 ENSMUSG00000004980 53379 2
## 26 Hnrnpa2b1 ENSMUSG00000004980 102642938 2
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## 27 Sra1 ENSMUSG00000006050 24068 2
## 28 Sra1 ENSMUSG00000006050 225372 2
## 29 Calcoco2 ENSMUSG00000006056 76815 2
## 30 Calcoco2 ENSMUSG00000006056 102642271 2
## 31 Clcnkb ENSMUSG00000006216 56365 2
## 32 Clcnkb ENSMUSG00000006216 102642166 2
## 33 Gcat ENSMUSG00000006378 14429 2
## 34 Gcat ENSMUSG00000006378 26912 2

There are quite a few Ensembl IDs with no EntrezID. These gene ids have no corresponding Entrez ID in
the EnsDb.Mmusculus.v79 database package. The Ensembl and Entrez databases don’t match on a 1:1 level
although they have started taking steps towards consolidating in recent years.

There are some genes that have multiple entries in the retrieved annotation. This is because there are multiple
Entrez IDs for a single Ensembl gene. These one-to-many relationships come up frequently in genomic
databases, it is important to be aware of them and check when necessary.

We will need to do a little work to account for these one-to-many relationships before adding the annotation
to our results table. We could decide that the mappings are ambiguous and elect to discard both of the
Entrez ID mappings. We could concatenate the Entrez IDs so that we don’t lose information. Alternatively,
we could spend some time manually comparing the details of the genes on the Ensembl and NCBI websites
and make a decision as to which Entrez ID to keep, e.g. Rpl13:

• Ensembl: ENSMUSG00000000740
• Entrez ID: 270106
• Entrez ID: 100040416

In this case it would perhaps makes most sense to discard the Entrez ID
100040416, which is for a pseudogene.

Exercise 1 - Retrieve the full annotation

So far we have retrieved the annotation for just 1000 genes, but we need annotations for the entire
results table.

A reminder of the code we have used so far:
# lets set it up
ourCols <- c("GENEID", "SYMBOL", "ENTREZID")
ourKeys <- rownames(results.interaction.11)[1:1000]

# run the query
annot <- AnnotationDbi::select(EnsDb.Mmusculus.v79,

keys=ourKeys,
columns=ourCols,
keytype="GENEID")

(a) Run the same query using all of the genes in our results table (results.interaction.33),
and this time include the biotype of the genes too. Hint: You can find the name of the
column for this by running columns(EnsDb.Mmusculus.v79)

(b) How many Ensembl genes have multipe Entrez IDs associated with them?

(c) Are all of the Ensembl gene IDs annotated? If not, why do you think this is?

In this case many of the problems with the annotation are due to the versions. As you will notice the Ens.Db
file that we loaded at the begining of this section was version 79. The current version from Ensembl that
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we used in the previous sections for counting reads was version 102 so there will be a number of differences
between them.

A curated annotation - one we prepared earlier

Dealing with all the one-to-many annotation mappings requires some manual curation of your annotation
table.

To save time we have created an annotation table in which we have modified the column names and dealt
with the one-to-many/missing issues for Entrez IDs.

The code we used for doing this is available in the extended materials section.
ensemblAnnot <- readRDS("RObjects/Ensembl_annotations.rds")
colnames(ensemblAnnot)

## [1] "GeneID" "Entrez" "Symbol" "Description" "Biotype"
## [6] "Chr" "Start" "End" "Strand"
annot.interaction.11 <- as.data.frame(results.interaction.11) %>%

rownames_to_column("GeneID") %>%
left_join(ensemblAnnot, "GeneID") %>%
rename(logFC=log2FoldChange, FDR=padj)

Finally we can output the annotation DE results using write_tsv.
write_tsv(annot.interaction.11, "results/Interaction.11_Results_Annotated.txt")

Visualisation

P-value histogram

A quick and easy “sanity check” for our DE results is to generate a p-value histogram. What we should see is
a high bar at 0 - 0.05 and then a roughly uniform tail to the right of this. There is a nice explanation of
other possible patterns in the histogram and what to do when you see them in this post.
hist(annot.interaction.11$pvalue)
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Histogram of annot.interaction.11$pvalue

annot.interaction.11$pvalue
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Shrinking the log2FoldChange

DESeq2 provides a functon called lfcShrink that shrinks log-Fold Change (LFC) estimates towards zero
using and empirical Bayes procedure. The reason for doing this is that there is high variance in the LFC
estimates when counts are low and this results in lowly expressed genes appearing to show greater differences
between groups than highly expressed genes. The lfcShrink method compensates for this and allows better
visualisation and ranking of genes. We will use it for our visualisation of the data.
ddsShrink.11 <- lfcShrink(ddsObj.interaction,

res = results.interaction.11,
type = "ashr")

## using 'ashr' for LFC shrinkage. If used in published research, please cite:
## Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2.
## https://doi.org/10.1093/biostatistics/kxw041
shrinkTab.11 <- as.data.frame(ddsShrink.11) %>%

rownames_to_column("GeneID") %>%
left_join(ensemblAnnot, "GeneID") %>%
rename(logFC=log2FoldChange, FDR=padj)

MA plots

MA plots are a common way to visualize the results of a differential analysis. We met them briefly towards the
end of the DESeq2 session. This plot shows the log-Fold Change for each gene against its average expression
across all samples in the two conditions being contrasted. DESeq2 has a handy function for plotting this.
Let’s use it too compare the shrunk and un-shrunk fold changes.
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par(mfrow=c(1,2))
plotMA(results.interaction.11, alpha=0.05)
plotMA(ddsShrink.11, alpha=0.05)
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The DESeq2 in plotMA function is fine for a quick look, but these inbuilt functions aren’t easy to customise,
make changes to the way it looks or add things such as gene labels. For this we would recommend using the
ggplot package.

Volcano Plots

Another common visualisation is the volcano plot which displays a measure of significance on the y-axis and
fold-change on the x-axis. We will use ggplot to create this.

A Brief Introduction to ggplot2

The ggplot2 package has emerged as an attractive alternative to the traditional plots provided by base R. A
full overview of all capabilities of the package is available from the cheatsheet.

In brief:-

• shrinkTab.11 is our data frame containing the variables we wish to plot
• aes creates a mapping between the variables in our data frame to the aesthetic properties of the plot:

– the x-axis will be mapped to logFC
– the y-axis will be mapped to the -log10(pvalue)

• geom_point specifies the particular type of plot we want (in this case a scatter plot)
• geom_text allows us to add labels to some or all of the points

– see the cheatsheet for other plot types

The real advantage of ggplot2 is the ability to change the appearance of our plot by mapping other variables
to aspects of the plot. For example, we could colour the points based on the sample group. To do this we can
add metadata from the sampleinfo table to the data. The colours are automatically chosen by ggplot2,
but we can specifiy particular values. For the volcano plot we will colour according whether the gene has
a pvalue below 0.05. We use a -log10 transformation for the y-axis; it’s commonly used for p-values as it
means that more significant genes have a higher scale.
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volcanoTab.11 <- shrinkTab.11 %>%
mutate(`-log10(pvalue)` = -log10(pvalue))

ggplot(volcanoTab.11, aes(x = logFC, y=`-log10(pvalue)`)) +
geom_point(aes(colour=pvalue < 0.05), size=1) +
geom_text(data=~top_n(.x, 1, wt=-FDR), aes(label=Symbol))

## Warning: Removed 47 rows containing missing values (geom_point).
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Exercise 2 - Volcano plot for 33 days

Now it’s your turn! We just made the volcano plot for the 11 days contrast, you will make the one for the 33
days contrast.

If you haven’t already make sure you load in our data and annotation. You can copy and paste the code
below.
# First load data and annotations
results.interaction.33 <- readRDS("RObjects/DESeqResults.interaction_d33.rds")
ensemblAnnot <- readRDS("RObjects/Ensembl_annotations.rds")

(a) Shrink the results for the 33 days contrast.

## using 'ashr' for LFC shrinkage. If used in published research, please cite:
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## Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2.
## https://doi.org/10.1093/biostatistics/kxw041

(b) Create a new column of -log10(pvalue) values in your shrinkTab for 33 days.

(c) Create a plot with points coloured by P-value < 0.05 similar to how we did in the first
volcano plot

## Warning: Removed 47 rows containing missing values (geom_point).
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(d) Compare these two volcano plots, what differences can you see between the two contrasts?

Venn Diagram

In the paper you may notice they have presented a Venn diagram of the results.
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We will recreate it with our analysis. To do this we are using the package ggvenn which is an extension to
ggplot from Linlin Yan.
library(ggvenn)

## Loading required package: grid

First we have to prepare the data with a column for each set we want in the Venn.
vennDat <- tibble(Geneid=rownames(results.interaction.11)) %>%

mutate(Upregulated_11 = results.interaction.11$padj < 0.05 & !is.na(results.interaction.11$padj) & results.interaction.11$log2FoldChange > 0) %>%
mutate(Downregulated_11 = results.interaction.11$padj < 0.05 & !is.na(results.interaction.11$padj) & results.interaction.11$log2FoldChange < 0) %>%
mutate(Upregulated_33 = results.interaction.33$padj < 0.05 & !is.na(results.interaction.33$padj) & results.interaction.33$log2FoldChange > 0) %>%
mutate(Downregulated_33 = results.interaction.33$padj < 0.05 & !is.na(results.interaction.33$padj) & results.interaction.33$log2FoldChange < 0)

ggvenn(vennDat, set_name_size = 4)
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Heatmap

We’re going to use the package ComplexHeatmap (Gu2016?). We’ll also use circlize to generate a colour
scale (Gu2014?).
library(ComplexHeatmap)
library(circlize)

We can’t plot the entire data set, let’s just select the top 300 by FDR. We’ll want to use normalised expression
values, so we’ll use the vst function.
# get the top genes
sigGenes <- shrinkTab.11 %>%

top_n(300, wt=-FDR) %>%
pull("GeneID")

# filter the data for the top 300 by padj
plotDat <- vst(ddsObj.interaction)[sigGenes,] %>%

assay()

The range expression values for different genes can vary widely. Some genes will have very high expression.
Our heatmap is going to be coloured according to gene expression. If we used a colour scale from 0 (no
expression) to the maximum expression, the scale will be dominated by our most extreme genes and it will
be difficult to discern any difference between most of the genes.

To overcome this we will z-scale the counts. This scaling method results in values for each that show the
number of standard deviations the gene expression is from the mean for that gene across all the sample - the
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mean will be ‘0,’ ‘1’ means 1 standard deviation higher than the mean, ‘-1’ means 1 standard deviation lower
than the mean.
z.mat <- t(scale(t(plotDat), center=TRUE, scale=TRUE))

# colour palette
myPalette <- c("royalblue3", "ivory", "orangered3")
myRamp <- colorRamp2(c(-2, 0, 2), myPalette)

Heatmap(z.mat, name = "z-score",
col = myRamp,
show_row_names = FALSE)
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we can also split the heat map into clusters and add some annotation.
ha1 = HeatmapAnnotation(df = colData(ddsObj.interaction)[,c("Status", "TimePoint")])

Heatmap(z.mat, name = "z-score",
col = myRamp,
show_row_name = FALSE,
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split=3,
rect_gp = gpar(col = "lightgrey", lwd=0.3),
top_annotation = ha1)
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Whenever we teach this session several student always ask how to set the colours of the bars at the top of the
heatmap. This is shown below.
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ha1 = HeatmapAnnotation(df = colData(ddsObj.interaction)[,c("Status", "TimePoint")], col = list(Status = c("Uninfected" = "hotpink", "Infected" = "purple"), TimePoint = c("d11" = "lightblue", "d33" = "darkblue")))

Heatmap(z.mat, name = "z-score",
col = myRamp,
show_row_name = FALSE,
split=3,
rect_gp = gpar(col = "lightgrey", lwd=0.3),
top_annotation = ha1)
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saveRDS(annot.interaction.11, file="results/Annotated_Results.d11.rds")
saveRDS(shrinkTab.11, file="results/Shrunk_Results.d11.rds")
saveRDS(annot.interaction.33, file="results/Annotated_Results.d33.rds")
saveRDS(shrinkTab.33, file="results/Shrunk_Results.d33.rds")
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